首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2010年   1篇
  2008年   1篇
  1999年   1篇
排序方式: 共有3条查询结果,搜索用时 782 毫秒
1
1.
In the course of our search for anti-microbial agents against dormant Mycobacterium tuberculosis, halicyclamine A was re-discovered as a lead for anti-tuberculosis agent from a marine sponge of Haliclona sp. on the guidance of the constructed bioassay. Halicyclamine A showed growth inhibition against Mycobacterium smegmatis, Mycobacterium bovis BCG, and M. tuberculosis H37Ra with MICs in the range of 1.0-5.0microg/ml under both aerobic condition and hypoxic condition inducing dormant state. The growth-inhibitory activity of halicyclamine A was bactericidal, and halicyclamine A did not exhibit cross-resistance with the currently used anti-tuberculosis drugs of isoniazid, ethambutol, rifampicin, and streptomycin. Halicyclamine A has been isolated originally as one of the active constituents inhibiting inosine 5'-monophosphate dehydrogenase (IMPDH). Then, in order to elucidate action-mechanism of halicyclamine A, we prepared IMPDH over-expressing strains of M. smegmatis. However, IMPDH was not target for halicyclamine A, because halicyclamine A showed same MIC value against the wild-type M. smegmatis and IMPDH over-expressing strains.  相似文献   
2.
Three new aminolipopeptides, designated trichoderins A (1), A1 (2), and B (3), were isolated from a culture of marine sponge-derived fungus of Trichoderma sp. as anti-mycobacterial substances with activity against active and dormant bacilli. The chemical structures of trichoderins were determined on the basis of spectroscopic study. Trichoderins showed potent anti-mycobacterial activity against Mycobacterium smegmatis, Mycobacterium bovis BCG, and Mycobacterium tuberculosis H37Rv under standard aerobic growth conditions as well as dormancy-inducing hypoxic conditions, with MIC values in the range of 0.02–2.0 μg/mL.  相似文献   
3.
Oxidation products of linseed oil were produced by impinging a stream of air onto the surface of pure linseed oil and injecting the vapor-laden air into soil percolation columns to enrich the population of bacteria capable of degrading linseed oil vapors. As the populations of bacteria increased, the linseed oil vapors were consumed by these organisms, and the air that emerged from the columns was free of linseed oil contaminants. Five different kinds of bacteria capable of growing on the linseed oil oxidation products as sole source of carbon and energy were found and isolated in pure culture. Chromatographic analyses showed that individual organisms removed specific components of the vapor at specific rates, but none was able to remove them all within a 30-day period of time. When the five were grown together and presented the linseed oil vapor, all vapor constituents were utilized, and the rate of utilization was greater than that seen when the isolates were tested in pure culture. This indicated that the five organisms operated as a bacterial consortium in the degradation of linseed oil vapors. Trickling biofilters prepared from pregrown populations of the five organisms challenged with linseed oil vapors were able to remove all volatile constituents found in linseed oil vapor. Bioremediation of the air was complete and it was accomplished in a single pass of the air through the filter.

This work shows that bacteria found in the soil are capable of degrading linseed oil vapors and that they can be grown in the laboratory and used successfully in bench scale trickling biofilters.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号