首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
The Leiden Longevity Study consists of families that express extended survival across generations, decreased morbidity in middle-age, and beneficial metabolic profiles. To identify which pathways drive this complex phenotype of familial longevity and healthy aging, we performed a genome-wide gene expression study within this cohort to screen for mRNAs whose expression changes with age and associates with longevity. We first compared gene expression profiles from whole blood samples between 50 nonagenarians and 50 middle-aged controls, resulting in identification of 2,953 probes that associated with age. Next, we determined which of these probes associated with longevity by comparing the offspring of the nonagenarians (50 subjects) and the middle-aged controls. The expression of 360 probes was found to change differentially with age in members of the long-lived families. In a RT-qPCR replication experiment utilizing 312 controls, 332 offspring and 79 nonagenarians, we confirmed a nonagenarian specific expression profile for 21 genes out of 25 tested. Since only some of the offspring will have inherited the beneficial longevity profile from their long-lived parents, the contrast between offspring and controls is expected to be weak. Despite this dilution of the longevity effects, reduced expression levels of two genes, ASF1A and IL7R, involved in maintenance of chromatin structure and the immune system, associated with familial longevity already in middle-age. The size of this association increased when controls were compared to a subfraction of the offspring that had the highest probability to age healthily and become long-lived according to beneficial metabolic parameters. In conclusion, an "aging-signature" formed of 21 genes was identified, of which reduced expression of ASF1A and IL7R marked familial longevity already in middle-age. This indicates that expression changes of genes involved in metabolism, epigenetic control and immune function occur as a function of age, and some of these, like ASF1A and IL7R, represent early features of familial longevity and healthy ageing.  相似文献   
3.
In animal models, single-gene mutations in genes involved in insulin/IGF and target of rapamycin signalling pathways extend lifespan to a considerable extent. The genetic, genomic and epigenetic influences on human longevity are expected to be much more complex. Strikingly however, beneficial metabolic and cellular features of long-lived families resemble those in animals for whom the lifespan is extended by applying genetic manipulation and, especially, dietary restriction. Candidate gene studies in humans support the notion that human orthologues from longevity genes identified in lower species do contribute to longevity but that the influence of the genetic variants involved is small. Here we discuss how an integration of novel study designs, labour-intensive biobanking, deep phenotyping and genomic research may provide insights into the mechanisms that drive human longevity and healthy ageing, beyond the associations usually provided by molecular and genetic epidemiology. Although prospective studies of humans from the cradle to the grave have never been performed, it is feasible to extract life histories from different cohorts jointly covering the molecular changes that occur with age from early development all the way up to the age at death. By the integration of research in different study cohorts, and with research in animal models, biological research into human longevity is thus making considerable progress.  相似文献   
4.
Background

The level of expression of the interleukin 7 receptor (IL7R) gene in blood has recently been found to be associated with familial longevity and healthy ageing. IL7R is crucial for T cell development and important for immune competence. To further investigate the IL7R pathway in ageing, we identified the closest interacting genes to construct an IL7R gene network that consisted of IL7R and six interacting genes: IL2RG, IL7, TSLP, CRLF2, JAK1 and JAK3. This network was explored for association with chronological age, familial longevity and immune-related diseases (type 2 diabetes, chronic obstructive pulmonary disease and rheumatoid arthritis) in 87 nonagenarians, 337 of their middle-aged offspring and 321 middle-aged controls from the Leiden Longevity Study (LLS).

Results

We observed that expression levels within the IL7R gene network were significantly different between the nonagenarians and middle-aged controls (P?=?4.6 × 10?4), being driven by significantly lower levels of expression in the elderly of IL7, IL2RG and IL7R. After adjustment for multiple testing and white blood cell composition and in comparison with similarly aged controls, middle-aged offspring of nonagenarian siblings exhibit a lower expression level of IL7R only (P?=?0.006). Higher IL7R gene expression in the combined group of middle-aged offspring and controls is associated with a higher prevalence of immune-related disease (P?=?0.001). On the one hand, our results indicate that lower IL7R expression levels, as exhibited by the members of long-lived families that can be considered as ‘healthy agers’, are beneficial in middle age. This is augmented by the observation that higher IL7R gene expression associates with immune-related disease. On the other hand, IL7R gene expression in blood is lower in older individuals, indicating that low IL7R gene expression might associate with reduced health. Interestingly, this contradictory result is supported by the observation that a higher IL7R gene expression level is associated with better prospective survival, both in the nonagenarians (Hazard ratio (HR)?=?0.63, P?=?0.037) and the middle-aged individuals (HR?=?0.33, P?=?1.9 × 10–4).

Conclusions

Overall, we conclude that the IL7R network reflected by gene expression levels in blood may be involved in the rate of ageing and health status of elderly individuals.

  相似文献   
5.
By studying the loci that contribute to human longevity, we aim to identify mechanisms that contribute to healthy aging. To identify such loci, we performed a genome-wide association study (GWAS) comparing 403 unrelated nonagenarians from long-living families included in the Leiden Longevity Study (LLS) and 1670 younger population controls. The strongest candidate SNPs from this GWAS have been analyzed in a meta-analysis of nonagenarian cases from the Rotterdam Study, Leiden 85-plus study, and Danish 1905 cohort. Only one of the 62 prioritized SNPs from the GWAS analysis (P<1×10(-4) ) showed genome-wide significance with survival into old age in the meta-analysis of 4149 nonagenarian cases and 7582 younger controls [OR=0.71 (95% CI 0.65-0.77), P=3.39 × 10(-17) ]. This SNP, rs2075650, is located in TOMM40 at chromosome 19q13.32 close to the apolipoprotein E (APOE) gene. Although there was only moderate linkage disequilibrium between rs2075650 and the ApoE ε4 defining SNP rs429358, we could not find an APOE-independent effect of rs2075650 on longevity, either in cross-sectional or in longitudinal analyses. As expected, rs429358 associated with metabolic phenotypes in the offspring of the nonagenarian cases from the LLS and their partners. In addition, we observed a novel association between this locus and serum levels of IGF-1 in women (P=0.005). In conclusion, the major locus determining familial longevity up to high age as detected by GWAS was marked by rs2075650, which tags the deleterious effects of the ApoE ε4 allele. No other major longevity locus was found.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号