首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
  2016年   1篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
Unexpected induction of arrhythmias in the heart is still one of the major risks of new drugs despite recent improvements in cardiac safety assays. Here we address this in a novel emerging assay system. Eleven reference compounds were administrated to spontaneously beating clusters of cardiomyocytes from human pluripotent stem cells (hPSC-CM) and the responses determined using multi-electrode arrays. Nine showed clear dose-dependence effects on field potential (FP) duration. Of these, the Ca2 + channel blockers caused profound shortening of action potentials, whereas the classical hERG blockers, like dofetilide and d,l-sotalol, induced prolongation, as expected.Unexpectedly, two potent blockers of the slow component of the delayed rectifier potassium current (IKs), HMR1556 and JNJ303, had only minor effects on the extracellular FP of wild-type hPSC-CM despite evidence of functional IKs channels. These compounds were therefore re-evaluated under conditions that mimicked reduced “repolarization reserve,” a parameter reflecting the capacity of cardiomyocytes to repolarize and a strong risk factor for the development of ventricular arrhythmias. Strikingly, in both pharmacological and genetic models of diminished repolarization reserve, HMR1556 and JNJ03 strongly increased the FP duration. These profound effects indicate that IKs plays an important role in limiting action potential prolongation when repolarization reserve is attenuated. The findings have important clinical implications and indicate that enhanced sensitization to repolarization-prolonging compounds through pharmacotherapy or genetic predisposition should be taken into account when assessing drug safety.  相似文献   
2.
3.
We have discovered an unusual homeodomain protein, called HOP, which is comprised simply of a homeodomain. HOP is highly expressed in the developing heart where its expression is dependent on the cardiac-restricted homeodomain protein Nkx2.5. HOP does not bind DNA and acts as an antagonist of serum response factor (SRF), which regulates the opposing processes of proliferation and myogenesis. Mice homozygous for a HOP null allele segregate into two phenotypic classes characterized by an excess or deficiency of cardiac myocytes. We propose that HOP modulates SRF activity during heart development; its absence results in an imbalance between cardiomyocyte proliferation and differentiation with consequent abnormalities in cardiac morphogenesis.  相似文献   
4.
5.
Stem cells can give rise to more stem cells or differentiate into more specialized cells. In the last 5 years not only have researchers succeeded in isolating human embryonic stem (hES) cell lines but also in identifying adult stem cells with possible pluripotent differentiation capacity. The shortage of donor organs or tissues for regenerative medicine has further stimulated research into the capacity of stem cells to differentiate into different cells and their use in replacement therapy in diseases such as Parkinson's, diabetes, rheumatoid arthritis and myocardial infarction. Current problems and recent progress with respect to hES cells and their potential use for clinical applications will be discussed. The potential of adult stem cells for differentiation and tissue repair is reviewed elsewhere.  相似文献   
6.
We report an expansion of the structure-activity relationship (SAR) of a novel series of indole-3-heterocyclic CB1 receptor agonists. Starting from the potent but poorly soluble lead, 1, a rational approach was taken in order to balance solubility, hERG activity and potency while retaining the desired long duration of action within the mouse tail flick test. This led to the discovery of compound 38 which successfully progressed into clinical development.  相似文献   
7.
More than 10 years after their first isolation, human embryonic stem cells are finally 'coming of age' in research and biotechnology applications as protocols for their differentiation and undifferentiated expansion in culture become robust and scalable, and validated commercial reagents become available. Production of human cardiomyocytes is now feasible on a daily basis for many laboratories with tissue culture expertise. An additional recent surge of interest resulting from the first production of human iPSCs (induced pluripotent stem cells) from somatic cells of patients now makes these technologies of even greater importance since it is likely that (genetic) cardiac disease phenotypes can be captured in the cardiac derivatives of these cells. Although cell therapy based on replacing cardiomyocytes lost or dysfunctional owing to cardiac disease are probably as far away as ever, biotechnology and pharmaceutical applications in safety pharmacology and drug discovery will probably impact this clinical area in the very near future. In the present paper, we review the cutting edge of this exciting area of translational research.  相似文献   
8.
SARCOSIN, also named Krp1, has been identified as a protein exclusively expressed in striated muscle tissue. Here we report on the role of SARCOSIN in skeletal muscle development and differentiation. We demonstrate, by means of whole-mount in situ hybridization, that Sarcosin mRNA is expressed in the myotome part of the mature somites in mouse embryos from embryonic day 9.5 onwards. Sarcosin is not expressed in the developing heart at these embryonic stages, and in adult tissues the mRNA expression levels are five times lower in the heart than in skeletal muscle. SARCOSIN protein partially co-localizes with the M-band protein myomesin and between and below laterally fusing myofibrils in adult skeletal muscle tissue. RNA interference mediated knock-down of SARCOSIN in the C2C12 myoblast cell line appeared to be stimulatory in the early phase of differentiation, but inhibitory at a later phase of differentiation.  相似文献   
9.
Transplantation of human embryonic stem cell-derived cardiomyocytes (hESC-CM) has been shown to improve the function of the rodent heart 1 month after myocardial infarction (MI). However, the mechanistic basis and optimal delivery strategies are unclear. We investigated the influence of the number of injected cells, resulting graft size, and possible paracrine mechanisms in this process. MI was induced in NOD-SCID mice (n = 84) followed by injection of enriched hESC-CM at different dosages, hESC-non-CM derivatives, culture medium, or no injection. Cardiac function was monitored for 12 weeks with 9.4 T MRI (n = 70). Grafts were identified by epifluorescence of a transgenic GFP marker and characterized by immunofluorescence. Vascularity and paracrine effects were investigated immunohistochemically. Transplantation of differentiated hESCs improved short, mid-, and long-term cardiac performance and survival, although only cardiomyocytes formed grafts. A mid-term (4 weeks) cardiomyocyte-specific enhancement was associated with elevated vascular density around the graft and attenuated compensatory remodeling. However, increasing the number of hESC-CM for injection did not enhance heart function further. Moreover, we observed that small graft size was associated with a better functional outcome. HESC-CM increased myocardial vascularization and enhanced heart function in mice after MI, but larger graft size was associated with reduced functional improvement. Future studies should focus on advanced delivery strategies and mechanisms of action rather than increasing graft size.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号