首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
A small part of cellular iron, usually called ‘labile iron pool’ (LIP), is not securely stored and has the potential to catalyse the formation of highly reactive oxygen species. The present work estimated LIP levels in human white cells by using the analytical power of flow cytometry. The method relies essentially on already established principles but has the added value of monitoring LIP in different subpopulations of human blood cells concurrently in a single sample. Examination of 41 apparently healthy individuals revealed a positive correlation between LIP levels and the age of the donors (r=0.656, 0.572 and 0.702 for granulocytes, lymphocytes and monocytes, respectively, p<0.0001), indicating that cells of older individuals are prone to oxidations in conditions of oxidative stress. It is suggested that LIP estimation may represent a valuable tool in examinations searching for links between iron and a variety of oxidative stress-related pathological conditions.  相似文献   
2.
Aspects of the molecular mechanism(s) of hydrogen peroxide-induced DNA damage and cell death were studied in the present investigation. Jurkat T-cells in culture were exposed either to low rates of continuously generated H(2)O(2) by the action of glucose oxidase or to a bolus addition of the same agent. In the first case, steady state conditions were prevailing, while in the latter, H(2)O(2) was removed by the cellular defense systems following first order kinetics. By using single-cell gel electrophoresis (also called comet assay), an initial increase in the formation of DNA single-strand breaks was observed in cells exposed to a bolus of 150 microM H(2)O(2). As the H(2)O(2) was exhausted, a gradual decrease in DNA damage was apparent, indicating the existence of an effective repair of single-strand breaks. Addition of 10 ng glucose oxidase in 100 microl growth medium (containing 1.5 x 10(5) cells) generated 2.0 +/- 0.2 microM H(2)O(2) per min. This treatment induced an increase in the level of single-strand breaks reaching the upper limit of detection by the methodology used and continued to be high for the following 6 h. However, when a variety of markers for apoptotic cell death (DNA cell content, DNA laddering, activation of caspases, PARP cleavage) were examined, only bolus additions of H(2)O(2) were able to induce apoptosis, while the continuous presence of this agent inhibited the execution of the apoptotic process no matter whether the inducer was H(2)O(2) itself or an anti-Fas antibody. These observations stress that, apart from the apparent genotoxic and proapoptotic effects of H(2)O(2), it can also exert antiapoptotic actions when present, even at low concentrations, during the execution of apoptosis.  相似文献   
3.
The calcein-AM (calcein-acetoxymethyl ester) method is a widely used technique that is supposed to assay the intracellular 'labile iron pool' (LIP). When cells in culture are exposed to this ester, it passes the plasma membrane and reacts with cytosolic unspecific esterases. One of the reaction products, calcein, is a fluorochrome and a hydrophilic alcohol to which membranes are non-permeable and which, consequently, is retained within the cytosol of cells. Calcein fluorescence is quenched following chelation of low-mass labile iron, and the degree of quenching gives an estimate of the amounts of chelatable iron. However, a requirement for the assay to be able to demonstrate cellular LIP in total is that such iron be localized in the cytosol and not in a membrane-limited compartment. For some time it has been known that a major part of cellular, redox-active, labile, low-mass iron is temporarily localized in the lysosomal compartment as a result of the autophagic degradation of ferruginous materials, such as mitochondrial complexes and ferritin. Even if some calcein-AM may escape cytosolic esterases and enter lysosomes to be cleaved by lysosomal acidic esterases, the resulting calcein does not significantly chelate iron at 相似文献   
4.
Very long acyl-CoA dehydrogenase (VLCAD) deficiency is a genetic pediatric disorder presenting with a spectrum of phenotypes that remains for the most part untreatable. Here, we present a novel strategy for the correction of VLCAD deficiency by increasing mutant VLCAD enzymatic activity. Treatment of VLCAD-deficient fibroblasts, which express distinct mutant VLCAD protein and exhibit deficient fatty acid β-oxidation, with S-nitroso-N-acetylcysteine induced site-specific S-nitrosylation of VLCAD mutants at cysteine residue 237. Cysteine 237 S-nitrosylation was associated with an 8–17-fold increase in VLCAD-specific activity and concomitant correction of acylcarnitine profile and β-oxidation capacity, two hallmarks of the disorder. Overall, this study provides biochemical evidence for a potential therapeutic modality to correct β-oxidation deficiencies.  相似文献   
5.
6.
Nitric oxide (NO) mediates a substantial part of its physiologic functions via S-nitrosylation, however the cellular substrates for NO-mediated S-nitrosylation are largely unknown. Here we describe the S-nitrosoproteome using a high-density protein microarray chip containing 16,368 unique human proteins. We identified 834 potentially S-nitrosylated human proteins. Using a unique and highly specific labeling and affinity capture of S-nitrosylated proteins, 138 cysteine residues on 131 peptides in 95 proteins were determined, defining critical sites of NO''s actions. Of these cysteine residues 113 are novel sites of S-nitrosylation. A consensus sequence motif from these 834 proteins for S-nitrosylation was identified, suggesting that the residues flanking the S-nitrosylated cysteine are likely to be the critical determinant of whether the cysteine is S-nitrosylated. We identify eight ubiquitin E3 ligases, RNF10, RNF11, RNF41, RNF141, RNF181, RNF208, WWP2, and UBE3A, whose activities are modulated by S-nitrosylation, providing a unique regulatory mechanism of the ubiquitin proteasome system. These results define a new and extensive set of proteins that are susceptible to NO regulation via S-nitrosylation. Similar approaches could be used to identify other post-translational modification proteomes.It is known that NO regulates the majority of its physiologic function through S-nitrosylation (1). Protein-assisted or small molecule, S-nitrosoglutathione (GSNO)1 trans-nitrosylation, oxidative S-nitrosation, and metalloprotein-catalyzed S-nitrosylation are the prominent cellular mechanisms that are utilized to S-nitrosylate proteins (2). A number of proteins are known to be S-nitrosylated and this post-translational modification can either activate or inactivate a protein''s biologic activity (1, 3). A number of attempts at probing tissue-specific S-nitrosoproteomes have been made, but the results of these are limited to proteins that are S-nitrosylated to a great degree and which are present at high concentrations (2, 46). Recently, to investigate determinants of S-nitrosylation, yeast and human target protein microarrays have been studied. However, these assay were limited because of the small number of proteins present on the chip (7). In addition, many proteins that are known to be S-nitrosylated have been studied through a targeted and biased approach (8). To overcome these shortcomings, we report the use of a 16,368 human protein microarray chip to better define the human S-nitrosoproteome.Ubiquitin is a 76-amino-acid long polypeptide that can be covalently added to lysine residues on targeted proteins either as single monomers or in chains. Ubiquitination of proteins can dramatically alter their function or localization depending on the number of ubiquitin attached and the nature of their linkages. The most well characterized ubiquitin-mediated process is targeting of the protein for degradation by the 26S proteasome, which occurs via poly-ubiquitination linked together through lysine 48 on the ubiquitin monomers. Ubiquitination occurs in a three-step enzymatic process in which the third enzyme, the ubiquitin protein ligase (E3) determines protein target specificity (9). NO S-nitrosylates the RING finger E3 ligases, parkin and XIAP, modifying their function (10, 11). In the case of parkin, S-nitrosylation transiently activates its E3 ligase activity, but ultimately inhibits its activity (12). In contrast, XIAP''s E3 ligase activity is unaffected by S-nitrosylation, but its anti-apoptotic function is compromised (11). Using the 16,368 human protein microarray, we identify a number of NO-regulated E3 ligases, the majority of which are activated by NO-dependent S-nitrosylation.  相似文献   
7.
Tropolones, the naturally occurring compounds responsible for the durability of heartwood of several cupressaceous trees, have been shown to possess both metal chelating and antioxidant properties. However, little is known about the ability of tropolone and its derivatives to protect cultured cells from oxidative stress-mediated damage. In this study, the effect of tropolones on hydrogen peroxide-induced DNA damage and apoptosis was investigated in cultured Jurkat cells. Tropolone, added to the cells 15 min before the addition of glucose oxidase, provided a dose dependent protection against hydrogen peroxide induced DNA damage. The IC50 value observed was about 15 μM for tropolone. Similar dose dependent protection was also observed with three other tropolone derivatives such as trimethylcolchicinic acid, purpurogallin and β-thujaplicin (the IC50 values were 34, 70 and 74 μM, respectively), but not with colchicine and tetramethyl purpurogallin ester. Hydrogen peroxide-induced apoptosis was also inhibited by tropolone. However, in the absence of exogenous H2O2 but in the presence of non-toxic concentrations of exogenous iron (100 μM Fe3+), tropolone dramatically increased the formation of single strand breaks at molar ratios of tropolone to iron lower than 3 to 1, while, when the ratio increased over 3, no toxicity was observed. In conclusion, the results presented in this study indicate that the protection offered by tropolone against hydrogen peroxide-induced DNA damage and apoptosis was due to formation of a redox-inactive iron complex, while its enhancement of iron-mediated DNA damage at ratios of [tropolone]/[Fe3+] lower than 3, was due to formation of a lipophilic iron complex which facilitates iron transport through cell membrane in a redox-active form.  相似文献   
8.
The role of intracellular iron, copper, and calcium in hydrogen peroxide-induced DNA damage was investigated using cultured Jurkat cells. The cells were exposed to low rates of continuously generated hydrogen peroxide by the glucose/glucose oxidase system, and the formation of single strand breaks in cellular DNA was evaluated by the sensitive method, single cell gel electrophoresis or "comet" assay. Pre-incubation with the specific ferric ion chelator desferrioxamine (0.1-5.0 mM) inhibited DNA damage in a time- and dose-dependent manner. On the other hand, diethylenetriaminepentaacetic acid (DTPA), a membrane impermeable iron chelator, was ineffective. The lipophilic ferrous ion chelator 1,10-phenanthroline also protected against DNA damage, while its nonchelating isomer 1,7-phenanthroline provided no protection. None of the above iron chelators produced DNA damage by themselves. In contrast, the specific cuprous ion chelator neocuproine (2,9-dimethyl-1,10-phenanthroline), as well as other copper-chelating agents, did not protect against H(2)O(2)-induced cellular DNA damage. In fact, membrane permeable copper-chelating agents induced DNA damage in the absence of H(2)O(2). These results indicate that, under normal conditions, intracellular redox-active iron, but not copper, participates in H(2)O(2)-induced single strand break formation in cellular DNA. Since BAPTA/AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester), an intracellular Ca(2+)-chelator, also protected against H(2)O(2)-induced DNA damage, it is likely that intracellular Ca(2+) changes are involved in this process as well. The exact role of Ca(2+) and its relation to intracellular transition metal ions, in particular iron, needs to be further investigated.  相似文献   
9.
A small part of cellular iron, usually called 'labile iron pool' (LIP), is not securely stored and has the potential to catalyse the formation of highly reactive oxygen species. The present work estimated LIP levels in human white cells by using the analytical power of flow cytometry. The method relies essentially on already established principles but has the added value of monitoring LIP in different subpopulations of human blood cells concurrently in a single sample. Examination of 41 apparently healthy individuals revealed a positive correlation between LIP levels and the age of the donors (r=0.656, 0.572 and 0.702 for granulocytes, lymphocytes and monocytes, respectively, p<0.0001), indicating that cells of older individuals are prone to oxidations in conditions of oxidative stress. It is suggested that LIP estimation may represent a valuable tool in examinations searching for links between iron and a variety of oxidative stress-related pathological conditions.  相似文献   
10.
In search for compounds, able to protect nuclear DNA in cells exposed to oxidative stress, extracts from olive leaves, olive fruits, olive oil and olive mill waste water were tested by using the “single cell gel electrophoresis” methodology (comet assay). Jurkat cells in culture were exposed to continuously generated hydrogen peroxide (11.8±1.5 μM per min) by direct addition into the growth medium of the appropriate amount of the enzyme “glucose oxidase” in the presence or absence of the tested total extracts. The protective effects of the tested extracts or isolated compounds were evaluated from their ability to decrease hydrogen peroxide-induced formation of single strand breaks in the nuclear DNA, while the toxic effects were estimated from the increase of DNA damage when the extracts or isolated compounds were incubated directly with the cells. Significant protection was observed in extracts from olive oil and olive mill waste water. However, above a concentration of 100 μg/ml olive oil extracts exerted DNA damaging effects by themselves in the absence of any H2O2. Extracts from olive leaves and olive fruits although protective, were also able to induce DNA damage by themselves. Main compounds isolated from the above described total extracts, like oleuropein glucoside, tyrosol, hydroxytyrosol and caffeic acid, were tested in the same experimental system and found to exert cytotoxic (oleuropein glucoside), no effect (tyrosol) or protective effects (hydroxytyrosol and caffeic acid). In conclusion, cytoprotective as well as cytotoxic compounds with potential pharmaceutical properties were detected in extracts from olive oil related sources by using the comet assay methodology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号