首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2018年   1篇
  2015年   1篇
  2007年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Previous reports indicate that inducible nitric oxide synthase (iNOS) blockade within the rostral ventrolateral medulla (RVLM) and caudal ventrolateral medulla (CVLM) differentially modulated cardiovascular responses, medullary glutamate, and GABA concentrations during static skeletal muscle contraction. In the current study, we determined the role of iNOS antagonism within the RVLM and CVLM on cardiovascular responses and iNOS protein expression during the exercise pressor reflex in anesthetized rats. Following 120 min of bilateral microdialysis of a selective iNOS antagonist, aminoguanidine (AGN; 10 µM), into the RVLM, the pressor responses were attenuated by 72 % and changes in heart rate were reduced by 38 % during a static muscle contraction. Furthermore, western blot analysis of iNOS protein abundance within the RVLM revealed a significant attenuation when compared to control animals. In contrast, bilateral administration of AGN (10 µM) into the CVLM augmented the increases in mean arterial pressure by 60 % and potentiated changes in heart rate by 61 % during muscle contractions, but did not alter expression of the iNOS protein within the CVLM. These results demonstrate that iNOS protein expression within the ventrolateral medulla is differentially regulated by iNOS blockade that may, in part, contribute to the modulation of cardiovascular responses during static exercise.  相似文献   
2.
Since the regulation of illicit gamma-hydroxybutyric acid (GHB) as a Federal Schedule I drug, the use of substitute chemical precursors such as gamma-butyrolactone (GBL) and 1,4-butanediol have emerged. Most recently there have been concerns about another potential analog of GHB, namely tetrahydrofuran (THF). While there is some suggestion that THF can be converted to GHB or GBL, little is known about the pharmacology of THF. Various doses of THF and GBL were studied in neurobehavioral tests to better characterize the pharmacology of THF. The TD(50)'s (with 95% confidence intervals) of THF for loss of the righting reflex and failure of performance on the rotarod test were 15.18 (11.88-19.39) and 7.00 (5.22-9.40) mmol/kg, respectively. These values were significantly greater (p<0.05) than those determined for GBL: 4.60 (3.25-6.51), and 0.85 (0.52-1.38) mmol/kg, respectively. The effects of THF on the impairment of motor function in the rotarod test were antagonized by pretreatment with the GABA(B) receptor antagonist CGP-35348 (200 mg/kg, i.p.).While both THF and GBL had depressant effects on open-field locomotor activity, the pattern of activity at the lower doses of THF and GBL were dissimilar. Chronic treatment with low dose THF (5 or 10 mmol/kg, i.p.) followed by acute challenge with THF (15 mmol/kg, i.p.) demonstrated tolerance to the observed sedative effects. While some of the mechanisms of the THF actions on the central nervous system appear likely to involve direct or indirect interactions with the GABA(B) receptor, some differences in its qualitative and quantitative pharmacology suggests other mechanisms are also likely involved in the observed neurobehavioral effects of these selected doses of THF in mice.  相似文献   
3.
In this work, a curcumin-diglutaric acid (CurDG) prodrug was synthesized by conjugation of curcumin with glutaric acid via an ester linkage. The water solubility, partition coefficient, release characteristics, and antinociceptive activity of CurDG were compared to those of curcumin. The aqueous solubility of CurDG (7.48 μg/mL) is significantly greater than that of curcumin (0.068 μg/mL). A study in human plasma showed that the CurDG completely releases curcumin within 2 h, suggesting the ability of CurDG to serve as a prodrug of curcumin. A hot plate test in mice showed the highest antinociceptive effect dose of curcumin at 200 mg/kg p.o., whereas CurDG showed the same effect at an effective dose of 100 mg/kg p.o., indicating that CurDG significantly enhanced the antinociceptive effect compared to curcumin. The enhanced antinociceptive effect of CurDG may be due to improved water solubility and increased oral bioavailability compared to curcumin.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号