首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   21篇
  174篇
  2022年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   5篇
  2013年   8篇
  2012年   9篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   8篇
  2006年   10篇
  2005年   7篇
  2004年   11篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1977年   1篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   3篇
  1971年   2篇
  1970年   4篇
  1969年   1篇
  1968年   3篇
  1967年   2篇
  1966年   1篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
1.
P1 plasmid replication. Role of initiator titration in copy number control   总被引:24,自引:0,他引:24  
The copy number control locus incA of unit copy plasmid P1 maps in a region containing nine 19 base-pair repeats. Previous results from studies in vivo and in vitro indicated that incA interacts with the plasmid-encoded RepA protein, which is essential for replication. It has been proposed that the repeat sequences negatively control copy number by sequestering the RepA protein, which is rate-limiting for replication. Our results lend further support to this hypothesis. Here we show that the repeats can be deleted completely from P1 miniplasmids and the deletion results in an approximately eightfold increase in plasmid copy number. So, incA sequences are totally dispensable for replication and have only a regulatory role. The copy number of incA-deleted plasmids can be reduced if incA sequences are present in trans or are reincorporated at two different positions in the plasmid. This reduction in copy number is not due to lowered expression of the repA gene in the presence of incA. We show that one repeat sequence is sufficient to bind RepA and can reduce the copy number of incA-deleted plasmids. When part of the repeat was deleted, it lost its ability to bind as well as influence copy number. These results show a strong correlation between the capacity of incA repeats to bind RepA protein both in vivo and in vitro, and the function of incA in the control of copy number.  相似文献   
2.
Binding of the P1-encoded protein RepA to the origin of P1 plasmid replication is essential for initiation of DNA replication and for autoregulatory repression of the repA promoter. Previous studies have shown defects in both initiation and repression in hosts lacking heat shock proteins DnaJ, DnaK, and GrpE and have suggested that these proteins play a role in the RepA-DNA binding required for initiation and repression. In this study, using in vivo dimethyl sulfate footprinting, we have confirmed the roles of the three heat shock proteins in promoting RepA binding to the origin. The defects in both activities could be suppressed by increasing the concentration of wild-type RepA over the physiological level. We also isolated RepA mutants that were effective initiators and repressors without requiring the heat shock proteins. These data suggest that the heat shock proteins facilitate both repression and initiation by promoting only the DNA-binding activity of RepA. In a similar plasmid, F, initiator mutants that confer heat shock protein independence for replication were also found, but they were defective for repression. We propose that the initiator binding involved in repression and the initiator binding involved in initiation are similar in P1 but different in F.  相似文献   
3.
Summary A deletion of phage P2, del6 (L.E. Bertani, 1980), thought to remove the structural gene int, and a deletion/substitution, vir94, thought to remove genes int, C and cox, were mapped by electron microscopy, using the heteroduplex technique.Four independent deletion/substitution mutations, all affecting the regulatory region of P2, were compared in all possible combinations with the same technique: two showed sequence homology in their substitution DNA. The results confirm the model proposed for the origin of these mutants, analogous to that for the origin of transducing variants in phage , but suggest in first approximation that the exchange between the P2 DNA and the chromosome of the host bacterium may occur at several different bacterial sites.A map of the regulatory region of P2, based on all data available from the study of deletions and insertions, is presented.  相似文献   
4.
From a tandem duplication mutant of phage P2, triplication, quadruplication and pentuplication forms were derived. They were recognized by decreased virion heat stability resulting from the increase in DNA content, and were confirmed by electron microscope heteroduplex mapping. These forms of partially repeated DNA are quite stable in P2 because of the low level of recombination typical of this phage. Under conditions normally employed for full DNA renaturation, these high order repeat chromosomes gave often incomplete renaturation over the repeated segments. Based on current models for DNA renaturation, several predictions were made and tested. The results, although not quantitatively exhaustive, indicated that base pairing proceeding from a nucleation site was sufficiently slow to allow a second nucleation to occur with a fair probability over a length of a few thousand base pairs.  相似文献   
5.
6.
7.
Abstract

The binding of CTAB with the proteins, gelatin, hemoglobin, β-lactoglobulin and lysozyme follow first order kinetics and occurs either in two or three distinct stages. The number of stages depends on the overall configuration of the biopolymers. The denatured protein, gelatin has shown three-stage kinetics under all conditions, whereas the native proteins, hemoglobinn, β-lactoglobulin and lysozyme have exhibited two stage kinetics. Heat treated lysozyme in 8 mol dm-3 urea medium has also shown a two-stage kinetics. On the basis of non interacting binding sites on the proteins and independent sequential binding, the rates of reaction have been observed to increase with temperature and follow the trend k1 >> k2 > k3. The interaction of CTA+ with the proteins is both electrostatic and hydrophobic. Hemoglobin has shown maximum reaction rate whereas, β-lactoglobulin has shown a minimum. The activation parameters for the kinetic process have exhibited almost non-variant Δ G? and Δ H? < T Δ S? The formation of activation complex in the Eyring model is entropy controlled so also the overall kinetics. An isokinetic entropy-enthalpy compensation phenomenon has been observed for the respective kinetic stages.  相似文献   
8.
Highlights? bAvd forms a highly positively charged pentameric barrel ? bAvd binds both DNA and RNA, but without sequence preference ? The coding sequence for bAvd serves dual purposes ? The interaction of bAvd with bRT is likely to be important for retrohoming  相似文献   
9.
BackgroundIn 2020, the SARS-CoV-2 (COVID-19) pandemic and lockdown control measures threatened to disrupt routine childhood immunisation programmes with early reports suggesting uptake would fall. In response, public health bodies in Scotland and England collected national data for childhood immunisations on a weekly or monthly basis to allow for rapid analysis of trends. The aim of this study was to use these data to assess the impact of different phases of the pandemic on infant and preschool immunisation uptake rates.Methods and findingsWe conducted an observational study using routinely collected data for the year prior to the pandemic (2019) and immediately before (22 January to March 2020), during (23 March to 26 July), and after (27 July to 4 October) the first UK “lockdown”. Data were obtained for Scotland from the Public Health Scotland “COVID19 wider impacts on the health care system” dashboard and for England from ImmForm.Five vaccinations delivered at different ages were evaluated; 3 doses of “6-in-1” diphtheria, tetanus, pertussis, polio, Haemophilus influenzae type b, and hepatitis B vaccine (DTaP/IPV/Hib/HepB) and 2 doses of measles, mumps, and rubella (MMR) vaccine. This represented 439,754 invitations to be vaccinated in Scotland and 4.1 million for England. Uptake during the 2020 periods was compared to the previous year (2019) using binary logistic regression analysis. For Scotland, uptake within 4 weeks of a child becoming eligible by age was analysed along with geographical region and indices of deprivation. For Scotland and England, we assessed whether immunisations were up-to-date at approximately 6 months (all doses 6-in-1) and 16 to 18 months (first MMR) of age.We found that uptake within 4 weeks of eligibility in Scotland for all the 5 vaccines was higher during lockdown than in 2019. Differences ranged from 1.3% for first dose 6-in-1 vaccine (95.3 versus 94%, odds ratio [OR] compared to 2019 1.28, 95% confidence intervals [CIs] 1.18 to 1.39) to 14.3% for second MMR dose (66.1 versus 51.8%, OR compared to 2019 1.8, 95% CI 1.74 to 1.87). Significant increases in uptake were seen across all deprivation levels.In England, fewer children due to receive their immunisations during the lockdown period were up to date at 6 months (6-in-1) or 18 months (first dose MMR). The fall in percentage uptake ranged from 0.5% for first 6-in-1 (95.8 versus 96.3%, OR compared to 2019 0.89, 95% CI 0.86– to 0.91) to 2.1% for third 6-in-1 (86.6 versus 88.7%, OR compared to 2019 0.82, 95% CI 0.81 to 0.83).The use of routinely collected data used in this study was a limiting factor as detailed information on potential confounding factors were not available and we were unable to eliminate the possibility of seasonal trends in immunisation uptake.ConclusionsIn this study, we observed that the national lockdown in Scotland was associated with an increase in timely childhood immunisation uptake; however, in England, uptake fell slightly. Reasons for the improved uptake in Scotland may include active measures taken to promote immunisation at local and national levels during this period and should be explored further. Promoting immunisation uptake and addressing potential vaccine hesitancy is particularly important given the ongoing pandemic and COVID-19 vaccination campaigns.

Fiona McQuaid and colleagues assess the uptake of infant and pre-school immunisations in Scotland and England during the COVID-19 pandemic.  相似文献   
10.
The wild-type repressor CI of temperate mycobacteriophage L1 and the temperature-sensitive (ts) repressor CIts391 of a mutant L1 phage, L1cIts391, have been separately overexpressed in E. coli. Both these repressors were observed to specifically bind with the same cognate operator DNA. The operator-binding activity of CIts391 was shown to differ significantly than that of the CI at 32 to 42 degrees C. While 40-95% operator-binding activity was shown to be retained at 35 to 42 degrees C in CI, more than 75% operator-binding activity was lost in CIts391 at 35 to 38 degrees C, although the latter showed only 10% less binding compared to that of the former at 32 degrees C. The CIts391 showed almost no binding at 42 degrees C. An in vivo study showed that the CI repressor inhibited the growth of a clear plaque former mutant of the L1 phage more strongly than that of the CIts391 repressor at both 32 and 42 degrees C. The half-life of the CIts391-operator complex was found to be about 8 times less than that of the CI-operator complex at 32 degrees C. Interestingly, the repressor-operator complexes preformed at 0 degrees C have shown varying degrees of resistance to dissociation at the temperatures which inhibit the formation of these complexes are inhibited. The CI repressor, but not that of CIts391, regains most of the DNA-binding activity on cooling to 32 degrees C after preincubation at 42 to 52 degrees C. All these data suggest that the 131(st) proline residue at the C-terminal half of CI, which changed to leucine in the CIts391, plays a crucial role in binding the L1 repressor to the cognate operator DNA, although the helix-turn-helix DNA-binding motif of the L1 repressor is located at its N-terminal end.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号