首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   12篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   9篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
排序方式: 共有56条查询结果,搜索用时 78 毫秒
1.
All chlorophyll (Chl)-binding proteins constituting the photosynthetic apparatus of both prokaryotes and eukaryotes possess hydrophobic domains, corresponding to membrane-spanning alpha-helices (MSHs). Hydrophobic cluster analysis of representative members of the different Chl protein superfamilies revealed that all Chl proteins except the five-helix reaction center II proteins and the small subunits of photosystem I possess related domains. As a major conclusion, we found that the eukaryotic antennae likely share a common precursor with the prokaryotic Chl a/b antennae from Chl-b-containing oxyphotobacteria. From these data, we propose a global scheme for the evolution of these proteins from a one-MSH ancestor.  相似文献   
2.
Photosystem I (PS I) complexes from two strains of the marine photosynthetic prokaryote Prochlorococcus, MED4 (= clone CCMP1378) and SS120 (= clone CCMP1375), were isolated by centrifugation on sucrose gradients after detergent treatment. The PS I-enriched fractions of both strains contained about 100 chlorophyll molecules per P700. Electron microscopy showed that the PS I complexes were in a trimeric form. The characteristic long wavelength fluorescence emission of PS I at 77 K, currently observed in chloroplasts and most cyanobacteria was absent both in intact cells and in PS I preparations of both strains. The major proteins of the PS I-enriched fractions were identified immunologically as PsaA and PsaB. Two proteins with apparent molecular masses of about 21 and 25 kDa were present in PS I preparations of Prochlorococcus, whereas the small PS I subunits in cyanobacteria all have molecular masses below 18 kDa. The 25 kDa protein showed a strong cross-reaction with a heterologous antibody against PsaL. Relatedness of the 21 kDa protein to PsaF was demonstrated by internal protein sequencing. Although only trace amounts of the major divinyl-Chl a/b-binding antenna complexes were present in the PS I preparations, significant amounts of divinyl-Chl b were observed in this fraction. The putative organization of this Chl b in PS I is discussed.  相似文献   
3.

Background

The picocyanobacterial genus Synechococcus occurs over wide oceanic expanses, having colonized most available niches in the photic zone. Large scale distribution patterns of the different Synechococcus clades (based on 16S rRNA gene markers) suggest the occurrence of two major lifestyles ('opportunists'/'specialists'), corresponding to two distinct broad habitats ('coastal'/'open ocean'). Yet, the genetic basis of niche partitioning is still poorly understood in this ecologically important group.

Results

Here, we compare the genomes of 11 marine Synechococcus isolates, representing 10 distinct lineages. Phylogenies inferred from the core genome allowed us to refine the taxonomic relationships between clades by revealing a clear dichotomy within the main subcluster, reminiscent of the two aforementioned lifestyles. Genome size is strongly correlated with the cumulative lengths of hypervariable regions (or 'islands'). One of these, encompassing most genes encoding the light-harvesting phycobilisome rod complexes, is involved in adaptation to changes in light quality and has clearly been transferred between members of different Synechococcus lineages. Furthermore, we observed that two strains (RS9917 and WH5701) that have similar pigmentation and physiology have an unusually high number of genes in common, given their phylogenetic distance.

Conclusion

We propose that while members of a given marine Synechococcus lineage may have the same broad geographical distribution, local niche occupancy is facilitated by lateral gene transfers, a process in which genomic islands play a key role as a repository for transferred genes. Our work also highlights the need for developing picocyanobacterial systematics based on genome-derived parameters combined with ecological and physiological data.  相似文献   
4.
Summary: Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level.  相似文献   
5.
The extrinsic PsbU and PsbV proteins are known to play a critical role in stabilizing the Mn4CaO5 cluster of the PSII oxygen-evolving complex (OEC). However, most isolates of the marine cyanobacterium Prochlorococcus naturally miss these proteins, even though they have kept the main OEC protein, PsbO. A structural homology model of the PSII of such a natural deletion mutant strain (P. marinus MED4) did not reveal any obvious compensation mechanism for this lack. To assess the physiological consequences of this unusual OEC, we compared oxygen evolution between Prochlorococcus strains missing psbU and psbV (PCC 9511 and SS120) and two marine strains possessing these genes (Prochlorococcus sp. MIT9313 and Synechococcus sp. WH7803). While the low light-adapted strain SS120 exhibited the lowest maximal O2 evolution rates (Pmax per divinyl-chlorophyll a, per cell or per photosystem II) of all four strains, the high light-adapted strain PCC 9511 displayed even higher PChlmax and PPSIImax at high irradiance than Synechococcus sp. WH7803. Furthermore, thermoluminescence glow curves did not show any alteration in the B-band shape or peak position that could be related to the lack of these extrinsic proteins. This suggests an efficient functional adaptation of the OEC in these natural deletion mutants, in which PsbO alone is seemingly sufficient to ensure proper oxygen evolution. Our study also showed that Prochlorococcus strains exhibit negative net O2 evolution rates at the low irradiances encountered in minimum oxygen zones, possibly explaining the very low O2 concentrations measured in these environments, where Prochlorococcus is the dominant oxyphototroph.  相似文献   
6.
PCR-ribotying, a typing method based on polymorphism in the 16S-23S intergenic spacer region, has been recently used to investigate outbreaks due to Clostridium difficile. However, this method generates bands of high and close molecular masses which are difficult to separate on agarose gel electrophoresis. To improve reading of banding patterns of PCR-ribotyping applied to C. difficile, a partial sequencing of the rRNA genes (16S and 23S) and intergenic spacer region has been performed, then a new set of primers located closer to the intergenic spacer region has been defined. The new PCR gave reproducible patterns of bands easy to separate on agarose gel electrophoresis. Each of the 10 serogroups and 11 subgroups of serogroup A produced a different pattern. This typing method has evidenced major qualities such as easiness, rapidity and reproducibility. However, its discriminatory power has to be evaluated to validate its importance as a typing tool for C. difficile.  相似文献   
7.
Two subpopulations differing essentially by their mean cell size were observed regularly in cultures and natural samples of the naked dinoflagellate Gymnodinium cf. nagasakiense Takayama et Adachi (currently known as Gyrodinium aureolum Hulburt), a species which frequently forms red tides in North European seas. “Large” cells represented the typical forms; they were morphologically similar to cells of the closely related Japanese species G. nagasakiense, which did not form any subpopulation of reduced size. “Small” and “large” cells of G. cf. nagasakiense had the same DNA content, but the nucleus of the former appeared to be much more condensed during interphase. Each cell type was able to divide and had its own growth dynamics; therefore, any intermediary between pure populations of “small” and of “large” cells were observed in culture. The “large” form generated a “small” cell by an atypical budding-like division, whereas the “small” form gave back a “large” form, once it ceased to divide, by simple enlargement of its cell body. Factory inducing cell size differentiation are yet unclear. Neither nitrogen nor phosphorus starvation induced a significant increase in the relative proportion of “small” and budding cells. Although cell size differentiation is associated with the formation of gametes in a variety of dinoflagellates, we demonstrated that “small” cells of G. cf. nagasakiense are able to divide asexually, in contrast to gametes of most other species. The high proliferative power of “small” cells as compared with normal cells suggests that they could play a significant role during red tides of G. cf. nagasakiense; in contrast, cells of the Japanese species G. Nagasakiense could sustain high growth rates with larger cell size because this species generally blooms in waters much warmer than those found in northern Europe.  相似文献   
8.
The recent availability of the whole genome of Synechococcus sp. strain WH8102 allows us to have a global view of the complex structure of the phycobilisomes of this marine picocyanobacterium. Genomic analyses revealed several new characteristics of these phycobilisomes, consisting of an allophycocyanin core and rods made of one type of phycocyanin and two types of phycoerythrins (I and II). Although the allophycocyanin appears to be similar to that found commonly in freshwater cyanobacteria, the phycocyanin is simpler since it possesses only one complete set of alpha and beta subunits and two rod-core linkers (CpcG1 and CpcG2). It is therefore probably made of a single hexameric disk per rod. In contrast, we have found two novel putative phycoerythrin-associated linker polypeptides that appear to be specific for marine Synechococcus spp. The first one (SYNW2000) is unusually long (548 residues) and apparently results from the fusion of a paralog of MpeC, a phycoerythrin II linker, and of CpeD, a phycoerythrin-I linker. The second one (SYNW1989) has a more classical size (300 residues) and is also an MpeC paralog. A biochemical analysis revealed that, like MpeC, these two novel linkers were both chromophorylated with phycourobilin. Our data suggest that they are both associated (partly or totally) with phycoerythrin II, and we propose to name SYNW2000 and SYNW1989 MpeD and MpeE, respectively. We further show that acclimation of phycobilisomes to high light leads to a dramatic reduction of MpeC, whereas the two novel linkers are not significantly affected. Models for the organization of the rods are proposed.  相似文献   
9.

Background

Three complete genomes of Prochlorococcus species, the smallest and most abundant photosynthetic organism in the ocean, have recently been published. Comparative genome analyses reveal that genome shrinkage has occurred within this genus, associated with a sharp reduction in G+C content. As all examples of genome reduction characterized so far have been restricted to endosymbionts or pathogens, with a host-dependent lifestyle, the observed genome reduction in Prochlorococcus is the first documented example of such a process in a free-living organism.

Results

Our results clearly indicate that genome reduction has been accompanied by an increased rate of protein evolution in P. marinus SS120 that is even more pronounced in P. marinus MED4. This acceleration has affected every functional category of protein-coding genes. In contrast, the 16S rRNA gene seems to have evolved clock-like in this genus. We observed that MED4 and SS120 have lost several DNA-repair genes, the absence of which could be related to the mutational bias and the acceleration of amino-acid substitution.

Conclusions

We have examined the evolutionary mechanisms involved in this process, which are different from those known from host-dependent organisms. Indeed, most substitutions that have occurred in Prochlorococcus have to be selectively neutral, as the large size of populations imposes low genetic drift and strong purifying selection. We assume that the major driving force behind genome reduction within the Prochlorococcus radiation has been a selective process favoring the adaptation of this organism to its environment. A scenario is proposed for genome evolution in this genus.  相似文献   
10.
The physiological regulation of glutamine synthetase (GS; EC 6.3.1.2) in the axenic Prochlorococcus sp. strain PCC 9511 was studied. GS activity and antigen concentration were measured using the transferase and biosynthetic assays and the electroimmunoassay, respectively. GS activity decreased when cells were subjected to nitrogen starvation or cultured with oxidized nitrogen sources, which proved to be nonusable for Prochlorococcus growth. The GS activity in cultures subjected to long-term phosphorus starvation was lower than that in equivalent nitrogen-starved cultures. Azaserine, an inhibitor of glutamate synthase, provoked an increase in enzymatic activity, suggesting that glutamine is not involved in GS regulation. Darkness did not affect GS activity significantly, while the addition of diuron provoked GS inactivation. GS protein determination showed that azaserine induces an increase in the concentration of the enzyme. The unusual responses to darkness and nitrogen starvation could reflect adaptation mechanisms of Prochlorococcus for coping with a light- and nutrient-limited environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号