首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   6篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   7篇
  2011年   5篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2000年   5篇
  1999年   3篇
  1990年   1篇
  1983年   1篇
排序方式: 共有73条查询结果,搜索用时 78 毫秒
1.
2.
An important role has been recently reported for bacterial biofilm in the pathophysiology of chronic diseases, such as chronic rhinosinusitis (CRS). CRS, affecting sinonasal mucosa, is a persistent inflammatory condition with a high prevalence around the world. Although the exact pathological mechanism of this disease has not been elicited yet, biofilm formation is known to lead to a more significant symptom burden and major objective clinical indicators. The high prevalence of multidrug-resistant bacteria has severely restricted the application of antibiotics in recent years. Furthermore, systemic antibiotic therapy, on top of its insufficient concentration to eradicate bacteria in the sinonasal biofilm, often causes toxicity, antibiotic resistance, and an effect on the natural microbiota, in patients. Thus, coming up with alternative therapeutic options instead of systemic antibiotic therapy is emphasized in the treatment of bacterial biofilm in CRS patients. The use of topical antibiotic therapy and antibiotic eluting sinus stents that induce higher antibiotic concentration, and decrease side effects could be helpful. Besides, recent research recognized that various natural products, nitric oxide, and bacteriophage therapy, in addition to the hindered biofilm formation, could degrade the established bacterial biofilm. However, despite these improvements, new antibacterial agents and CRS biofilm interactions are complicated and need extensive research. Finally, most studies were performed in vitro, and more preclinical animal models and human studies are required to confirm the collected data. The present review is specifically discussing potential therapeutic strategies for the treatment of bacterial biofilm in CRS patients.  相似文献   
3.
4.
5.
Previously, coexpression of smooth and skeletal differentiation markers, but not myogenic regulatory factors (MRFs), was observed from E16.5 mouse fetuses in a small percentage of diaphragm level esophageal muscle cells, suggesting that MRFs are not involved in the process of initiation of developmentally programmed transdifferentiation in the esophagus. To investigate smooth-to-skeletal esophageal muscle transition, we analyzed Myf5nlacZ knock-in mice, MyoD-lacZ and myogenin-lacZ transgenic embryos with a panel of the antibodies reactive with myogenic regulatory factors (MRFs) and smooth and skeletal muscle markers. We observed that lacZ-expressing myogenic precursors were not detected in the esophagus before E15.5, arguing against the hypothesis that muscle precursor cells populate the esophagus at an earlier stage of development. Rather, the expression of the MRFs initiated in smooth muscle cells in the upper esophagus of E15.5 mouse embryos and was immediately followed by the expression of skeletal muscle markers. Moreover, transdifferentiation was markedly delayed or absent only in the absence of Myf5, suggesting that appropriate initiation and progression of smooth-to-skeletal muscle transdifferentiation is Myf5-dependent. Accordingly, the esophagus of Myf5(-/-):MyoD(-/-)embryos completely failed to undergo skeletal myogenesis and consisted entirely of smooth muscle. Lastly, extensive proliferation of muscularis precursor cells, without programmed cell death, occurred concomitantly with esophageal smooth-to-skeletal muscle transdifferentiation. Taken together, these results indicate that transdifferentiation is the fate of all smooth muscle cells in the upper esophagus and is normally initiated by Myf5.  相似文献   
6.
7.
Molecular Biology Reports - Breast Cancer is the most frequent neoplasm diagnosed among women worldwide. Genetic background and lifestyle/environment play a significant role in the disease...  相似文献   
8.
9.
The growth and repair of skeletal muscle after birth depends on satellite cells that are characterized by the expression of Pax7. We show that Pax3, the paralogue of Pax7, is also present in both quiescent and activated satellite cells in many skeletal muscles. Dominant-negative forms of both Pax3 and -7 repress MyoD, but do not interfere with the expression of the other myogenic determination factor, Myf5, which, together with Pax3/7, regulates the myogenic differentiation of these cells. In Pax7 mutants, satellite cells are progressively lost in both Pax3-expressing and -nonexpressing muscles. We show that this is caused by satellite cell death, with effects on the cell cycle. Manipulation of the dominant-negative forms of these factors in satellite cell cultures demonstrates that Pax3 cannot replace the antiapoptotic function of Pax7. These findings underline the importance of cell survival in controlling the stem cell populations of adult tissues and demonstrate a role for upstream factors in this context.  相似文献   
10.
Regulation and phylogeny of skeletal muscle regeneration   总被引:1,自引:0,他引:1  
One of the most fascinating questions in regenerative biology is why some animals can regenerate injured structures while others cannot. Skeletal muscle has a remarkable capacity to regenerate even after repeated traumas, yet limited information is available on muscle repair mechanisms and how they have evolved. For decades, the main focus in the study of muscle regeneration was on muscle stem cells, however, their interaction with their progeny and stromal cells is only starting to emerge, and this is crucial for successful repair and re-establishment of homeostasis after injury. In addition, numerous murine injury models are used to investigate the regeneration process, and some can lead to discrepancies in observed phenotypes. This review addresses these issues and provides an overview of some of the main regulatory cellular and molecular players involved in skeletal muscle repair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号