首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   7篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   5篇
  2015年   6篇
  2014年   8篇
  2013年   5篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   10篇
  1997年   2篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   1篇
  1990年   4篇
  1989年   4篇
  1986年   3篇
  1985年   1篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1958年   1篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
1.
2.
F nuclear magnetic resonance spectroscopy was used to study the metabolism of 5-fluorouracil in four strains of Nectria haematococca which displayed similar sensitivities to growth inhibition by this compound but differed in their pigmentation. The major metabolites, 5-fluorouridine and alpha-fluoro-beta-alanine, were excreted into the medium by all four strains. The classical ribofluoronucleotides (5-fluorouridine-5'-monophosphate, -diphosphate, and -triphosphate) and alpha-fluoro-beta-alanine were identified in the acid-soluble fraction of perchloric acid extracts of mycelia. Two hydrolysis products of 5-fluorouracil incorporated into RNA were found in the acid-insoluble pool. They were unambiguously assigned to 5-fluorouridine-2'-monophosphate and 3'-monophosphate with specific hydrolysis reactions on isolated RNA. The lack of fluorodeoxyribonucleotides and the fact that the four strains incorporated similar amounts of fluororibonucleotides into their RNAs strongly suggest an RNA-directed mechanism of cytotoxicity for 5-fluorouracil. The heavily pigmented wild type differed from the three low-pigmented strains in its low uptake of 5-fluorouracil and, consequently, in its reduced biosynthesis of 5-fluorouridine and alpha-fluoro-beta-alanine. At present, it is not clear whether this change in 5-fluorouracil metabolism is a side effect of pigment production or results from another event.  相似文献   
3.
Rabbit antisera raised to human and chicken MHC molecules were used to immunoprecipitate cross-reactive molecules from biosynthetically and cell surface-labeled spleen and/or blood cells of representative vertebrate species. Five major points emerged: 1) There were many nonspecific cross-reactions using these techniques, so various criteria were developed to distinguish these from true MHC-like molecules. 2) Only very small subpopulations of immunogen-specific antibodies cross-reacted with MHC-like molecules in other nonmammalian species. These subpopulations were different for each species and even within a species, sometimes being so limited as to behave like alloantisera. This led to a very scattered pattern of true cross-reactions that sometimes failed to reflect the properties of the bulk antibody population. 3) Antisera containing antibodies to class II beta- and class I alpha-chains cross-reacted better and more widely than those to B-G, class II alpha and, in general, beta 2-microglobulin. 4) Some cross-reactive antibodies were clearly directed to epitopes on the surface of the mature heterodimers, but many seemed to recognize nonlinear cryptic determinants, presumably in the contact regions between the chains. These latter antibodies recognized biosynthetic intermediates and also a variety of unusual cell surface MHC-like molecules present in reptile and amphibian, but absent in the mammal and chicken cells tested. These included E homodimers whose relationship to chicken B-G molecules is unknown. 5) MHC-like molecules were identified in a bird, three reptiles, and two amphibians, but no molecules with the expected properties were found with these reagents in any of the fish tested.  相似文献   
4.
5.
6.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
7.
8.

Background  

In addition to known protein-coding genes, large amounts of apparently non-coding sequence are conserved between the human and mouse genomes. It seems reasonable to assume that these conserved regions are more likely to contain functional elements than less-conserved portions of the genome.  相似文献   
9.
To select a Saccharomyces cerevisiae reference strain amenable to experimental techniques used in (molecular) genetic, physiological and biochemical engineering research, a variety of properties were studied in four diploid, prototrophic laboratory strains. The following parameters were investigated: 1) maximum specific growth rate in shake-flask cultures; 2) biomass yields on glucose during growth on defined media in batch cultures and steady-state chemostat cultures under controlled conditions with respect to pH and dissolved oxygen concentration; 3) the critical specific growth rate above which aerobic fermentation becomes apparent in glucose-limited accelerostat cultures; 4) sporulation and mating efficiency; and 5) transformation efficiency via the lithium-acetate, bicine, and electroporation methods. On the basis of physiological as well as genetic properties, strains from the CEN.PK family were selected as a platform for cell-factory research on the stoichiometry and kinetics of growth and product formation.  相似文献   
10.
 Unlike most salamanders, the Mexican axolotl (Ambystoma mexicanum) fails to produce enough thyroxin to undergo anatomical metamorphosis, although a “cryptic metamorphosis” involving a change from fetal to adult hemoglobins has been described. To understand to what extent the development of the axolotl hemopoietic system is linked to anatomical metamorphosis, we examined the appearance and thyroxin dependence of class II molecules on thymus, blood, and spleen cells, using both flow cytometry and biosynthetic labeling followed by immunoprecipitation. Class II molecules are present on B cells as early as 7 weeks after hatching, the first time analyzed. At this time, most thymocytes, all T cells, and all erythrocytes lack class II molecules, but first thymocytes at 17 weeks, then T cells at 22 weeks, and finally erythrocytes at 26–27 weeks virtually all bear class II molecules. Class II molecules and adult hemoglobin appear at roughly the same time in erythrocytes. These data are most easily explained by populations of class II-negative cells being replaced by populations of class II-positive cells, and they show that the hemopoietic system matures at a variety of times unrelated to the increase of thyroxin that drives anatomical metamorphosis. We found that administration of thyroxin during axolotl ontogeny does not accelerate or otherwise affect the acquisition of class II molecules, nor does administration of drugs that inhibit thyroxin (sodium perchlorate, thiourea, methimazole, and 1-methyl imidazole) retard or abolish this acquisition, suggesting that the programs for anatomical metamorphosis and some aspects of hemopoietic development are entirely separate. Received: 15 July 1997 / Revised: 28 October 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号