首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  2016年   1篇
  2011年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
Abalone (Haliotis) undergoes a period of reproductive maturation, followed by the synchronous release of gametes, called broadcast spawning. Field and laboratory studies have shown that the tropical species Haliotis asinina undergoes a two‐week spawning cycle, thus providing an excellent opportunity to investigate the presence of endogenous spawning‐associated peptides. In female H. asinina, we have isolated a peptide (5145 Da) whose relative abundance in hemolymph increases substantially just prior to spawning and is still detected using reverse‐phase high‐performance liquid chromatography chromatograms up to 1‐day post‐spawn. We have isolated this peptide from female hemolymph as well as samples prepared from the gravid female gonad, and demonstrated through comparative sequence analysis that it contains features characteristic of Kazal‐type proteinase inhibitors (KPIs). Has‐KPI is expressed specifically within the gonad of adult females. A recombinant Has‐KPI was generated using a yeast expression system. The recombinant Has‐KPI does not induce premature spawning of female H. asinina when administered intramuscularly. However it displays homomeric aggregations and interaction with at least one mollusc‐type neuropeptide (LRDFVamide), suggesting a role for it in regulating neuropeptide endocrine communication. This research provides new understanding of a peptide that can regulate reproductive processes in female abalone, which has the potential to lead to the development of greater control over abalone spawning. The findings also highlight the need to further explore abalone reproduction to clearly define a role for novel spawning‐associated peptide in sexual maturation and spawning. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
2.
We used antibodies against octopus gonadotropin-releasing hormone (octGnRH) and tunicate GnRH (tGnRH-I) in order to investigate the existence and distribution of GnRH-like peptides in the central nervous system (CNS) and in the ovary during various stages of the ovarian cycle of the white shrimp, Litopenaeus vannamei. OctGnRH-immunoreactive and tGnRH-I-immunoreactive neurons and fibers were present in several regions of the supraesophageal ganglion (brain), subesophageal ganglion (SEG), thoracic ganglia, and abdominal ganglia. In the brain, both octGnRH immunoreactivity (ir) and tGnRH-I-ir were detected in neurons of clusters 6, 11, 17, and associated fibers, and the anterior medial protocerebral, posterior medial protocerebral, olfactory, and tegumentary neuropils. In the SEG and thoracic ganglia, octGnRH-immunoreactive and tGnRH-I-immunoreactive neurons and fibers were present in dorsolateral and ventromedial cell clusters and in surrounding fibers. Only immunoreactive fibers were detected in the abdominal ganglia. In the ovary, both octGnRH and tGnRH-I were detected at medium intensity in the cytoplasm of early step oocytes (Oc2) and, at high intensity, in Oc3. Furthermore, octGnRH-ir and tGnRH-I-ir were intense in follicular cells surrounding Oc2 and Oc3. The presence of GnRH-ir in the CNS and ovary indicates that GnRH-like peptides occur in the white shrimp, and that GnRHs are involved in the reproductive process, especially ovarian maturation and the differentiation of oocytes, as reported in other species.  相似文献   
3.
Evidence for the presence of a putative egg-laying (ELH) hormone has been previously described in the black tiger shrimp, Penaeus monodon, so a further investigation was carried out to detect its presence in a range of Decapoda crustaceans prior to a full molecular analysis. The crustaceans were represented by the Australian fresh water yabbie, Cherax destructor, the Australian southern rock lobster, Jasus edwardsii, the snow crab, Chionoecetes opilio, and the blue swimmer crab, Portunus pelagicus. Female cerebral ganglia, ventral nerve cords and gonads were investigated in a comparative study of the distribution of the immunoreactive hormone using immunoenzyme and immunofluorescence techniques. Immunoreactivity was detected in all tissues of interest, and the distribution patterns showed similarity within the four species, as well as that of P. monodon reported in the earlier study. There were minor variations. These data indicate that a putative ELH-like neuropeptide is widespread in crustaceans, and supports its previous identification in a range of molluscs and other invertebrates. Elucidation of the molecular structure of the peptide hormone and its encoding gene, as well as its involvement in spawning behaviour of crustaceans, is now fully under investigation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号