首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  23篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
1.
Several molecules extracted from natural products exhibit different biological activities, such as ion channel modulation, activation of signaling pathways, and anti-inflammatory or antitumor activity. In this study, we tested the antitumor ability of natural compounds extracted from the Raputia praetermissa plant. Among the compounds tested, an alkaloid, here called compound S4 (4-Deoxyraputindole C), showed antitumor effects against human tumor lineages. Compound S4 was the most active against Raji, a lymphoma lineage, promoting cell death with characteristics that including membrane permeabilization, dissipation of the mitochondrial potential, increased superoxide production, and lysosomal membrane permeabilization. The use of cell death inhibitors such as Z-VAD-FMK (caspase inhibitor), necrostatin-1 (receptor-interacting serine/threonine-protein kinase 1 inhibitor), E-64 (cysteine peptidases inhibitor), and N-acetyl- L -cysteine (antioxidant) did not decrease compound S4-dependent cell death. Additionally, we tested the effect of cellular activity on adherent human tumor cells. The highest reduction of cellular activity was observed in A549 cells, a lung carcinoma lineage. In this lineage, the effect on the reduction of the cellular activity was due to cell cycle arrest, without plasma membrane permeabilization, loss of the mitochondrial potential or lysosomal membrane permeabilization. Compound S4 was able to inhibit cathepsin B and L by a nonlinear competitive (negative co-operativity) and simple-linear competitive inhibitions, respectively. The potency of inhibition was higher against cathepsin L. Compound S4 promoted cell cycle arrest at G 0 and G 2 phase, and increase the expression of p16 and p21 proteins. In conclusion, compound S4 is an interesting molecule against cancer, promoting cell death in the human lymphoma lineage Raji and cell cycle arrest in the human lung carcinoma lineage A549.  相似文献   
2.

Background

Sleep is a physiological event that directly influences health by affecting the immune system, in which calcium (Ca2 +) plays a critical signaling role. We performed live cell measurements of cytosolic Ca2 + mobilization to understand the changes in Ca2 + signaling that occur in splenic immune cells after various periods of sleep deprivation (SD).

Methods

Adult male mice were subjected to sleep deprivation by platform technique for different periods (from 12 to 72 h) and Ca2 + intracellular fluctuations were evaluated in splenocytes by confocal microscopy. We also performed spleen cell evaluation by flow cytometry and analyzed intracellular Ca2 + mobilization in endoplasmic reticulum and mitochondria. Additionally, Ca2 + channel gene expression was evaluated

Results

Splenocytes showed a progressive loss of intracellular Ca2 + maintenance from endoplasmic reticulum (ER) stores. Transient Ca2 + buffering by the mitochondria was further compromised. These findings were confirmed by changes in mitochondrial integrity and in the performance of the store operated calcium entry (SOCE) and stromal interaction molecule 1 (STIM1) Ca2 + channels.

Conclusions and general significance

These novel data suggest that SD impairs Ca2 + signaling, most likely as a result of ER stress, leading to an insufficient Ca2 + supply for signaling events. Our results support the previously described immunosuppressive effects of sleep loss and provide additional information on the cellular and molecular mechanisms involved in sleep function.  相似文献   
3.
Many reports have shown that antimicrobial peptides exhibit anticancer abilities. Gomesin (Gm) exhibits potent cytotoxic activity against cancer cells by a membrane pore formation induced after well-orchestrated intracellular mechanisms. In this report, the replacements of the Cys by Ser or Thr, and the use D-amino acids in the Gm structure were done to investigate the importance of the resistance to degradation of the molecule with its cytotoxicity. [Thr2,6,11,15]-Gm, and [Ser2,6,11,15]-Gm exhibits low cytotoxicity, and low resistance to degradation, and after 24 h are present in localized area near to the membrane. Conversely, the use of D-amino acids in the analogue [D-Thr2,6,11,15]-D-Gm confers resistance to degradation, increases its potency, and maintained this peptide spread in the cytosol similarly to what happens with Gm. Replacements of Cys by Thr and Gln by L- or D-Pro ([D-Thr2,6,11,15, Pro9]-D-Gm, and [Thr2,6,11,15, D-Pro9]-Gm), which induced a similar β-hairpin conformation, also increase their resistance to degradation, and cytotoxicity, but after 24 h they are not present spread in the cytosol, exhibiting lower cytotoxicity in comparison to Gm. Additionally, chloroquine, a lysosomal enzyme inhibitor potentiated the effect of the peptides. Furthermore, the binding and internalization of peptides was determined, but a direct correlation among these factors was not observed. However, cholesterol ablation, which increase fluidity of cellular membrane, also increase cytotoxicity and internalization of peptides. β-hairpin spatial conformation, and intracellular localization/target, and the capability of entry are important properties of gomesin cytotoxicity.  相似文献   
4.
5.
In vitro, heparin and antithrombotic drugs specifically stimulate the synthesis of an antithrombotic heparan sulfate proteoglycan (HSPG) produced by endothelial cells. The putative heparin binding site(s) that may be related to this phenomenon were investigated. In the preceding article, using various heparin probes, it was shown that the heparin does not bind to the endothelial cell surface, but only to the extracellular matrix. The present study demonstrated that, when the cells were exposed to heparin at 37 degrees C, the heparin was internalized and with time was localized in lysosomes. However, endocytosis of heparin was not required for the stimulation of HSPG synthesis. The requirement for heparin degradation in the stimulus of HSPG synthesis was also investigated. When the cells were incubated with chloroquine, a lysosomotropic amine that raises the lysosomal pH thus inhibiting enzymatic degradation of internalized compounds, stimulation of HSPG synthesis was still observed. These combined results indicate that neither internalization nor degradation of heparin is required for stimulation of HSPG synthesis, and suggests that its binding to the extracellular matrix could be responsible for this effect.  相似文献   
6.
The role of intracellular Ca2+ (Ca2+i) on hematopoiesis was investigated in long term bone marrow cultures using cytokines and agonists of P2 receptors. Cytokines interleukin 3 and granulocyte/macrophage colony stimulator factor promoted a modest increase in Ca2+i concentration ([Ca2+]i) with activation of phospholipase Cgamma, MEK1/2, and Ca2+/calmodulin kinase II. Involvement of protein kinase C was restricted to stimulation with interleukin 3. In addition, these cytokines promoted proliferation (20 times) and an increase in the Gr-1(-)Mac-1+ population with participation of gap junctions (GJ). Nevertheless ATP, ADP, and UTP promoted a large increase in [Ca2+]i, moderate proliferation (6 times), a reduction in the primitive Gr-1(-)Mac-1(-)c-Kit+ population, and differentiation into macrophages without participation of GJ. It is likely that Ca2+i participates as a regulator of hematopoietic signaling: moderate increases in [Ca2+]i would be related to cytokine-dependent proliferation with participation of GJ, whereas high increases in [Ca2+]i would be related to macrophage differentiation without maintenance of the primitive population.  相似文献   
7.
Although the existence of the renin–angiotensin system (RAS) in the bone marrow is clear, the exact role of this system in hematopoiesis has not yet been fully characterized. Here the direct role of angiotensin II (AngII) in hematopoietic stem cells (HSCs), common myeloid progenitors (CMPs), granulocyte/monocyte progenitors (GMPs), and megakaryocytes/erythroid progenitors (MEPs), using a system of coculture with stromal S17 cells. Flow cytometry analysis showed that AngII increases the percentage of HSC and GMP, while reducing CMP with no effect on MEP. According to these data, AngII increased the total number of mature Gr-1+/Mac-1+ cells without changes in Terr119+ cells. AngII does not induce cell death in the population of LSK cells. In these populations, treatment with AngII decreases the expression of Ki67+ protein with no changes in the Notch1 expression, suggesting a role for AngII on the quiescence of immature cells. In addition, exposure to AngII from murine bone marrow cells increased the number of CFU-GM and BFU-E in a clonogenic assay. In conclusion, our data showed that AngII is involved in the regulation of hematopoiesis with a special role in HSC, suggesting that AngII should be evaluated in coculture systems, especially in cases that require the expansion of these cells in vitro, still a significant challenge for therapeutic applications in humans.  相似文献   
8.

Background

Plant lectins have attracted great interest in cancer studies due to their antitumor activities. These proteins or glycoproteins specifically and reversibly bind to different types of carbohydrates or glycoproteins. Breast cancer, which presents altered glycosylation of cell surface glycoproteins, is one of the most frequent malignant diseases in women. In this work, we describe the effect of the lectin Bauhinia forficata lectin (BfL), which was purified from B. forficata Link subsp. forficata seeds, on the MCF7 human breast cancer cellular line, investigating the mechanisms involved in its antiproliferative activity.

Methods

MCF7 cells were treated with BfL. Viability and adhesion alterations were evaluated using flow cytometry and western blotting.

Results

BfL inhibited the viability of the MCF7 cell line but was ineffective on MDA-MB-231 and MCF 10A cells. It inhibits MCF7 adhesion on laminin, collagen I and fibronectin, decreases α1, α6 and β1 integrin subunit expression, and increases α5 subunit expression. BfL triggers necrosis and secondary necrosis, with caspase-9 inhibition. It also causes deoxyribonucleic acid (DNA) fragmentation, which leads to cell cycle arrest in the G2/M phase and a decrease in the expression of the regulatory proteins pRb and p21.

Conclusion

BfL shows selective cytotoxic effect and adhesion inhibition on MCF7 breast cancer cells.

General significance

Cell death induction and inhibition of cell adhesion may contribute to understanding the action of lectins in breast cancer.  相似文献   
9.
The existence of cancer stem cells is debatable in numerous solid tumors, yet in leukemia, there is compelling evidence of this cell population. Leukemic stem cells (LSCs) are altered cells in which accumulating genetic and/or epigenetic alterations occur, resulting in the transition between the normal, preleukemic, and leukemic status. These cells do not follow the normal differentiation program; they are arrested in a primitive state but with high proliferation potential, generating undifferentiated blast accumulation and a lack of a mature cell population. The identification of LSCs might guide stem cell biology research and provide key points of distinction between these cells and their normal counterparts. The identification and characterization of the main features of LSCs can be useful as tools for diagnosis and treatment. In this context, the aim of the present review was to connect immunophenotype data in the main types of leukemia to further guide technical improvements.  相似文献   
10.
Herein, we provide new contribution to the mechanisms involved in keratinocytes response to hyperosmotic shock showing, for the first time, the participation of Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP) activity in this event. We reported that sorbitol-induced osmotic stress mediates alterations in the phosphorylation of pivotal cytoskeletal proteins, particularly Src and cofilin. Furthermore, an increase in the expression of the phosphorylated form of LMWPTP, which was followed by an augment in its catalytic activity, was observed. Of particular importance, these responses occurred in an intracellular milieu characterized by elevated levels of reduced glutathione (GSH) and increased expression of the antioxidant enzymes glutathione peroxidase and glutathione reductase. Altogether, our results suggest that hyperosmostic stress provides a favorable cellular environment to the activation of LMWPTP, which is associated with increased expression of antioxidant enzymes, high levels of GSH and inhibition of Src kinase. Finally, the real contribution of LMWPTP in the hyperosmotic stress response of keratinocytes was demonstrated through analysis of the effects of ACP1 gene knockdown in stressed and non-stressed cells. LMWPTP knockdown attenuates the effects of sorbitol induced-stress in HaCaT cells, mainly in the status of Src kinase, Rac and STAT5 phosphorylation and activity. These results describe for the first time the participation of LMWPTP in the dynamics of cytoskeleton rearrangement during exposure of human keratinocytes to hyperosmotic shock, which may contribute to cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号