首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2018年   1篇
  2015年   1篇
  2001年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Modeling capabilities for shallow, vegetated, systems are reviewed to assess hydrodynamic, wind and wave, submersed plant friction, and sediment transport aspects. Typically, ecosystems with submersed aquatic vegetation are relatively shallow, physically stable and of moderate hydrodynamic energy. Wind-waves are often important to sediment resuspension. These are open systems that receive flows of material and energy to various degrees around their boundaries. Bed shear-stress, erosion, light extinction and submersed aquatic vegetation influence each other. Therefore, it is difficult to uncouple these components in model systems. Spatial changes in temperature, salinity, dissolved and particulate material depend on hydrodynamics. Water motions range from wind-wave scales on the small end, which might be important to erosion, to sub-tidal or seasonal scales on the large end, which are generally important to flushing. Seagrass modifies waves and, therefore, affects the relationships among the non-dimensional scaling parameters commonly used in wave analysis. Seagrass shelters the bed, often causing aggradation and changes in grain size, while increasing total resistance to flow. Hydrodynamic friction can not be well characterized by a single-parameter equation in seagrass beds, and models need appropriate enhancement when applied to these systems.Presently, modeling is limited by computational power, which is, however, improving. Other limitations include information on seagrass effects expressed in frictional resistance to currents, bed-sheltering, and wave damping in very shallow water under conditions of both normal and high bed roughness. Moreover, quantitative information on atmospheric friction and shear stress in shallow water and seagrass areas are needed. So far, various empirical equations have been used with wind or wave forcing to describe resuspension in shallow water. Although these equations have been reasonably successful in predicting suspended sediment concentrations, they require site-specific data. More detailed laboratory and field measurements are needed to improve the resuspension equations and model formulation pertaining to seagrass beds.  相似文献   
2.
Hedgehog (Hh) is a secreted morphogen involved in both short- and long-range signaling necessary for tissue patterning during development. It is unclear how this dually lipidated protein is transported over a long range in the aqueous milieu of interstitial spaces. We previously showed that the long-range signaling of Hh requires its oligomerization. Here we show that Hh is secreted in the form of exovesicles. These are derived by the endocytic delivery of cell surface Hh to multivesicular bodies (MVBs) via an endosomal sorting complex required for transport (ECSRT)–dependent process. Perturbations of ESCRT proteins have a selective effect on long-range Hh signaling in Drosophila wing imaginal discs. Of importance, oligomerization-defective Hh is inefficiently incorporated into exovesicles due to its poor endocytic delivery to MVBs. These results provide evidence that nanoscale organization of Hh regulates the secretion of Hh on ESCRT-derived exovesicles, which in turn act as a vehicle for long-range signaling.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号