首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Plant Molecular Biology - The first biochemical characterization of a chloroplastic disaggregase is reported (Arabidopsis thaliana ClpB3). ClpB3 oligomerizes into active hexamers that resolubilize...  相似文献   
2.
NAD+-dependent glycerol (Gro) dehydrogenase (GroDHase) catalyzes the conversion of Gro into dihydroxyacetone (DHA), the first step for fermentative Gro metabolism in Escherichia coli. In this work, we cloned the gldA gene that codes for the E. coli GroDHase and homologously expressed, purified, and kinetically characterized the recombinant protein. To achieve this, the enzyme was over-produced using Gro supplemented growth medium and lactose as the inducer. The enzyme was highly purified using either pseudo-affinity chromatography or a simple heat-shock treatment, which is potentially valuable for industrial production of GroDHase. We detected efficient oxidation of Gro derived from biodiesel production to DHA by gas chromatography. The results presented in this work support recombinant GroDHase production in a biorefinery setting as a relevant tool for converting Gro into DHA for future biotechnological applications.  相似文献   
3.
The production of recombinant proteins in bacteria has increased significantly in recent years, becoming a common tool for both research and the industrial production of proteins. One of the requirements of this methodology is to obtain the desired protein without contaminants. However, this goal cannot always be readily achieved. Multiple strategies have been developed to improve the quality of the desired protein product. Nevertheless, contamination with molecular chaperones is one of the recalcitrant problems that still affects the quality of the obtained proteins. The ability of chaperones to bind to unfolded proteins or to regions where the polypeptide chain is exposed make the removal of the contamination during purification challenging to achieve. This work aimed to develop a strategy to remove contaminating DnaK, one of the homologous Hsp70 molecular chaperones found in Escherichia coli, from purified recombinant proteins. For this purpose, we developed a methodology that captures the DnaK from the contaminating proteins by co‐incubation with a GST‐cleanser protein that has free functional binding sites for the chaperone. The cleanser protein can then be easily removed together with the captured DnaK. Here, we demonstrated the utility of our system by decontaminating a Histidine‐tagged recombinant protein in a batch process. The addition of the GST‐cleanser protein in the presence of ATP‐Mg eliminates the DnaK contamination substantially. Thus, our decontaminant strategy results versatile and straightforward and can be applied to proteins obtained with different expression and purifications systems as well as to small samples or large volume preparations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号