首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   11篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2015年   7篇
  2014年   10篇
  2013年   4篇
  2012年   5篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   8篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   3篇
  1998年   4篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1988年   4篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
排序方式: 共有94条查询结果,搜索用时 312 毫秒
1.
2.
Summary A series of P-element insertion mutations at one site in the vestigial (vg) locus was tested for cytotype dependent effects on vg expression. The mutant phenotypes for four P-element vg alleles were suppressed when the alleles were stabilized in the P-cytotype. The suppression was observed whenever repressor-producing P-elements were present in the genome. Genetic and molecular analysis indicated that the suppression is not due to excision or other irreversible alterations of the inserts. The results are consistent with a model in which somatic P-element repressor binding to the ends of P-element inserts can modify the effects of these inserts on target gene expression.  相似文献   
3.
The presence of three major proteins alpha, beta and gamma in rat ventral prostate was demonstrated by electrophoresis in polyacrylamide gels containing sodium dodecyl sulphate. Their regulation by androgens was studied by measuring the rates of synthesis of the proteins in minced prostatic tissue by using L-[35S]methionine. The three proteins account for 30-40% of the proteins synthesized in the gland. After castration, their rates of synthesis rapidly decline to about 1% that of normal animals, and this cannot be accounted for by the accompanying decrease in general protein synthesis. Testosterone reverses these changes in castrated animals, so that after 4 days normal synthesis is restored. The regulation is specific for androgens, since cyproterone acetate, an anti-androgen, is inhibitory and oestradiol-17beta and corticosterone are without effect. Preliminary characterization of the proteins indicates that protein alpha (mol.wt. 22000, pI unknown) is a glycoprotein containing glucose and/or mannose residues and occurs in both the mitochondrial and cytosol fractions. Protein beta (mol.wt. 12000, pI5.4) is also a glycoprotein, but is found exclusively in the cytosol fraction. Protein gamma (mol.wt. 8000, pI5.4) is also a glycoprotein, but is found exclusively in the cytosol fraction. Protein gamma (mol.wt. 8000, pI5.4) is also found exclusively in the cytosol fraction.  相似文献   
4.
5.
Abstract Cationic amphiphilic drugs (CADs) of varied clinical use were screened to determine their capacity to alter the pattern of labeling with 32Pj of cerebral cortex mince phospholipids. The altered phospholipid labeling patterns were qualitatively similar, the prominent features being reduced incorporation into phosphatidylcholine and increased incorporation into phosphatidic acid. Relative potencies were: (±)-propranolol > chlorpromazine = 4,4'-bis(diethylaminoethoxy) α,β -diethyldiphenylethane > desipramine > di-bucaine > pimozide > oxymetazoline = fenfluramine = haloperidol = chloroquine > amphetamine = no drug added. Propranolol was used to study the action of CADs further. Its effect was time- and dose-dependent, but in contrast with pineal gland, no label appeared in phosphatidyl-CMP (CDP-diacylglycerol), nor did dialysis of the mince to reduce diffusible substrates or exogenous addition of substrates cause appearance of liponucleotide. Thus lack of diffusible precursors is not responsible for CAD effects in vitro. Pulse-chase experiments with 32P1 and [2-3H]glycerol suggested that inhibition of phosphatidate phosphohydrolase may be partly responsible for the observed alterations in phospholipid labeling in the presence of CADs.  相似文献   
6.
Chick embryo fibroblasts produce two forms of hyaluronidase   总被引:1,自引:0,他引:1       下载免费PDF全文
Cultured chick embryo fibroblasts derived from skin and skeletal muscle exhibit hyaluronidase activity both associated with the cell layer and secreted into the medium. Although both forms of the enzyme have a number of similar characteristics (R.W. Orkin and B.P. Toole, 1980, J. Biol. CHem. 255), they differ in thermal stability at neutral pH and in behavior on ion-exchange chromatography. Both forms of the enzyme are equally stable at acidic pH for long intervals, but the cell-associated hyaluronidase is significantly less stable than the secreted froms at neutral pH and at temperatures more than or equal to 30 degrees C. Neither the presence of proteases nor inhibitors of hyaluronidase appear to be involved in the cell-asspcoated enzyme. Chromatography of the two forms of hyaluronidase on carboxymethyl cellulose reveals that most (60-90 percent) of the secreted form of the enzyme elutes at a lower ionic strength than the cell- associated enzyme. Treatment of the secreted form of hyaluronidase with neuraminidase shifts its elution profile on carboxymethyl cellulose toward that of the cell-associated form, and also decreases its thermal stability at neutral pH. In contrast, treatment of the secreted form of hyaluronidase with alkaline phosphatase has no detectable effect. These data suggest that the secreted hyaluronidase differs from the cellular form in possessing additional sialic acid residues which endow the former with increased stability in the extracellular milieu.  相似文献   
7.
When an γ‐irradiated Dy‐, Tm‐, Sm‐ or Mn‐doped CaSO4 crystal is impulsively deformed, two peaks appear in the ML intensity versus time curve, whereby the first ML peak is found in the deformation region and the second in the post‐deformation region of the crystals. In this study, intensities Im1 and Im2 corresponding to first and second ML peaks, respectively, increased linearly with an impact velocity v0 of the piston used to deform the crystals, and times tm1 and tm2 corresponding to the first and second ML peaks, respectively, decreased with impact velocity. Total ML intensity initially increased with impact velocity and then reached a saturation value for higher values of impact velocity. ML intensity increased with increasing γ‐doses and size of crystals. Results showed that the electric field produced as a result of charging of newly‐created surfaces caused tunneling of electrons to the valence band of the hole‐trapping centres. The free holes generated moved in the valence band and their subsequent recombination with electron trapping centres released energy, thereby resulting in excitation of luminescent centres. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
8.
Intrinsically disordered proteins (IDPs) are unfolded under physiological conditions. Here we ask if archetypal IDPs in aqueous milieus are best described as swollen disordered coils in a good solvent or collapsed disordered globules in a poor solvent. To answer this question, we analyzed data from molecular simulations for a 20-residue polyglutamine peptide and concluded, in accord with experimental results, that water is a poor solvent for this system. The relevance of monomeric polyglutamine is twofold: It is an archetypal IDP sequence and its aggregation is associated with nine neurodegenerative diseases. The main advance in this work lies in our ability to make accurate assessments of solvent quality from analysis of simulations for a single, rather than multiple chain lengths. We achieved this through the proper design of simulations and analysis of order parameters that are used to describe conformational equilibria in polymer physics theories. Despite the preference for collapsed structures, we find that polyglutamine is disordered because a heterogeneous ensemble of conformations of equivalent compactness is populated at equilibrium. It is surprising that water is a poor solvent for polar polyglutamine and the question is: why? Our preliminary analysis suggests that intrabackbone interactions provide at least part of the driving force for the collapse of polyglutamine in water. We also show that dynamics for conversion between distinct conformations resemble structural relaxation in disordered, glassy systems, i.e., the energy landscape for monomeric polyglutamine is rugged. We end by discussing generalizations of our methods to quantitative studies of conformational equilibria of other low-complexity IDP sequences.  相似文献   
9.
Pappu V  Bagchi P 《Biorheology》2007,44(3):191-215
Hydrodynamic interaction between erythrocytes (RBC) and leukocytes (WBC) in a microvessel of size 20-40 micron, typical of a postcapillary venule, is studied using a two-dimensional computational model. The model is based on immersed boundary method, and it takes into consideration the particulate nature of blood by explicitly modeling individual blood cell, and cell deformation. Due to their highly flexible nature, RBC drift away from the wall and toward the center of a vessel creating a cell-free layer. It is shown here that the lateral motion of RBC is strongly affected in presence of a WBC, and is dependent on whether the WBC is non-adherent or firmly adhered. When the WBC is non-adherent, some RBC, depending on their initial radial locations and vessel size, may be deflected closer toward the wall, resulting in a decrease in the cell-free layer. The apparent viscosity of the whole blood containing both RBC and WBC is computed, and shown to be much higher than that containing RBC only. The increased viscosity cannot be accounted for by the contribution due to WBC only. This observation is in agreement with a previous in vivo measurement. Here we show that the additional flow resistance is due to the decrease in the cell-free layer resulting from the WBC-RBC interaction. It can be accounted for by a two-layer model of blood when the reduced values of the cell-free layer thickness are used. When the WBC is firmly adhered, RBC easily move away from the wall, and the cell-free layer is not significantly changed. In such cases, the major contribution to whole blood viscosity comes from the WBC alone. The hydrodynamic interaction between WBC and RBC, though it exists, does not contribute significantly when WBC are adhered.  相似文献   
10.
The striking similarity between observed circular dichroism spectra of nonprolyl homopolymers and that of regular left-handed polyproline II (PII) helices prompted Tiffany and Krimm to propose in 1968 that unordered peptides and unfolded proteins are built of PII segments linked by sharp bends. A large body of experimental evidence, accumulated over the past three decades, provides compelling evidence in support of the original hypothesis of Tiffany and Krimm. Of particular interest are the recent experiments of Shi et al. who find significant PII structure in a short unfolded alanine-based peptide. What is the physical basis for PII helices in peptide and protein unfolded states? The widely accepted view is that favorable chain-solvent hydrogen bonds lead to a preference for dynamical fluctuations about noncooperative PII helices in water. Is this preference simply a consequence of hydrogen bonding or is it a manifestation of a more general trend for unfolded states which are appropriately viewed as chains in a good solvent? The prevalence of closely packed interiors in folded proteins suggests that under conditions that favor folding, water—which is a better solvent for itself than for any polypeptide chain—expels the chain from its midst, thereby maximizing chain packing. Implicit in this view is a complementary idea: under conditions that favor unfolding, chain-solvent interactions are preferred and in a so-called good solvent, chain packing density is minimized. In this work we show that minimization of chain packing density leads to preferred fluctuations for short polyalanyl chains around canonical, noncooperative PII-like conformations. Minimization of chain packing is modeled using a purely repulsive soft-core potential between polypeptide atoms. Details of chain-solvent interactions are ignored. Remarkably, the simple model captures the essential physics behind the preference of short unfolded alanine-based peptides for PII helices. Our results are based on a detailed analysis of the potential energy landscape which determines the system''s structural and thermodynamic preferences. We use the inherent structure formalism of Stillinger and Weber, according to which the energy landscape is partitioned into basins of attraction around local minima. We find that the landscape for the experimentally studied seven-residue alanine-based peptide is dominated by fluctuations about two noncooperative structures: the left-handed polyproline II helix and its symmetry mate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号