首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   6篇
  2012年   4篇
  2011年   9篇
  2010年   6篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1989年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1960年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
1.
The crystal structures of ascorbate peroxidase (APX) and cytochrome c peroxidase (CCP) show that the active site structures are nearly identical. Both enzymes contain a His-Asp-Trp catalytic triad in the proximal pocket. The proximal Asp residue hydrogen bonds with both the His proximal heme ligand and the indole ring nitrogen of the proximal Trp. The Trp is stacked parallel to and in contact with the proximal His ligand. This Trp is known to be the site of free radical formation in CCP compound I and also is essential for activity. However, APX forms a porphyrin radical and not a Trp-centered radical, even though the His-Asp-Trp triad structure is the same in both peroxidases. We found that conversion of the proximal Trp to Phe has no effect on APX enzyme activity and that the mutant crystal structure shows that changes in the structure are confined to the site of mutation. This indicates that the paths of electron transfer in CCP and APX are distinctly different. The Trp-to-Phe mutant does alter the stability of the APX compound I porphyrin radical, by a factor of two. Electrostatic calculations and modeling studies show that a potassium cation located about 8?Å from the proximal Trp in APX, but absent in CCP, makes a significant contribution to the stability of a cation Trp radical. This underscores the importance of long-range electrostatic effects in enzyme catalyzed reactions.  相似文献   
2.
Alkylation at N-1 of the NADP+ adenine ring with 3,4-epoxybutanoic acid gave 1-(2-hydroxy-3-carboxypropyl)-NADP+. Enzymic reduction of the latter, followed by alkaline Dimroth rearrangement and enzymic reoxidation, gave N6-(2-hydroxy-3-carboxypropyl)-NADP+. On the other hand, bromination at C-8 of the NADP+ adenine ring, followed by reaction with the disodium salt of 3-mercaptroproionic acid, gave 8-(2-carboxyethylthio)-NADP+. Carbodimide coupling of the three carboxylic NADP+ derivatives to polyethyleneimine afforded the corresponding macromolecular NADP+ analogues. The carboxylic and the polyethyleneimine derivatives synthesized have been shown to be co-enzymically active with yeast glucose-6-phosphate dehydrogenase, liver glutamate dehydrogenase and yeast aldehyde dehydrogenase. The degree of efficiency relative to NADP+ with the three enzymes ranged from 17% to 100% for the carboxylic derivatives and from 1% to 36% for the polyethyleneimine analogues. On comparing the efficiences with the three enzymes of the N-1 derivatives to the one of the corresponding N6 anc C-8 analogues, the order of activity was N-1 greater than N6 greater C-8, except in the case of the carboxylic compounds with glutamate dehydrogenase, where this order was inverted. None of these modified cofactors were active with pig heart isocitrate dehydrogenase.  相似文献   
3.
A large amount of research within organic biosensors is dominated by organic electrochemical transistors (OECTs) that use conducting polymers such as poly(3,4-ethylene dioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS). Despite the recent advances in OECT-based biosensors, the sensing is solely reliant on the amperometric detection of the bioanalytes. This is typically accompanied by large undesirable parasitic electrical signals from the electroactive components in the electrolyte. Herein, we present the use of in situ resonance Raman spectroscopy to probe subtle molecular structural changes of PEDOT:PSS associated with its doping level. We demonstrate how such doping level changes of PEDOT:PSS can be used, for the first time, on operational OECTs for sensitive and selective metabolite sensing while simultaneously performing amperometric detection of the analyte. We test the sensitivity by molecularly sensing a lowest glucose concentration of 0.02 mM in phosphate-buffered saline solution. By changing the electrolyte to cell culture media, the selectivity of in situ resonance Raman spectroscopy is emphasized as it remains unaffected by other electroactive components in the electrolyte. The application of this molecular structural probe highlights the importance of developing biosensing probes that benefit from high sensitivity of the material's structural and electrical properties while being complimentary with the electronic methods of detection.  相似文献   
4.
We have studied the distribution of the ALDH3A1, ALDH1A1 and ALDH2 proteins in the cornea and stomach of several animal species, including mammals (C57BL/6J and SWR/J mice, rat and pig), birds (chicken and turkey), amphibians (frog) and fish (trout and zebrafish). High ALDH3A1 protein levels and catalytic activities were detected in C57BL/6J mouse, rat and pig. We found complete absence of the ALDH3A1 protein in SWR/J mice, which carry the Aldh3a1(c) allele characterized by four amino acid substitutions (G88R, I154N, H305R and I352V) and lack of enzymatic activity. This indicates that the SWR/J mouse strain is a natural gene knockout model for ALDH3A1. Traces of ALDH3A1 were detected in rabbit, whereas expression was absent from chicken, turkey, frog, trout, and zebrafish. Interestingly, significant levels of the cytosolic ALDH1A1 and mitochondrial ALDH2 proteins were detected by immunoblot analysis in all examined species that are deficient in ALDH3A1 expression. In contrast, no ALDH1A1 or ALDH2 protein was detected in the species expressing ALDH3A1. It can, therefore, be concluded that corneal expression of ALDH3A1 or ALDH1A1/ALDH2 occurs in a taxon-specific manner, supporting the protective role of these ALDHs in cornea against the UV-induced oxidative damage.  相似文献   
5.
It has been often stated that the overall pattern of human maternal lineages in Europe is largely uniform. Yet this uniformity may also result from an insufficient depth and width of the phylogenetic analysis, in particular of the predominant western Eurasian haplogroup (Hg) H that comprises nearly a half of the European mitochondrial DNA (mtDNA) pool. Making use of the coding sequence information from 267 mtDNA Hg H sequences, we have analyzed 830 mtDNA genomes, from 11 European, Near and Middle Eastern, Central Asian, and Altaian populations. In addition to the seven previously specified subhaplogroups, we define fifteen novel subclades of Hg H present in the extant human populations of western Eurasia. The refinement of the phylogenetic resolution has allowed us to resolve a large number of homoplasies in phylogenetic trees of Hg H based on the first hypervariable segment (HVS-I) of mtDNA. As many as 50 out of 125 polymorphic positions in HVS-I were found to be mutated in more than one subcluster of Hg H. The phylogeographic analysis revealed that sub-Hgs H1*, H1b, H1f, H2a, H3, H6a, H6b, and H8 demonstrate distinct phylogeographic patterns. The monophyletic subhaplogroups of Hg H provide means for further progress in the understanding of the (pre)historic movements of women in Eurasia and for the understanding of the present-day genetic diversity of western Eurasians in general.  相似文献   
6.
The water-insoluble procedures in US Pharmacopeia (USP) General Chapter Residual Solvents <467>, which are based on European Pharmacopoeia procedures, were optimized and modified before their inclusion in the chapter to improve their scope, performance, and ruggedness. The optimized procedures use a static headspace introduction system with a gas chromatograph equipped with a flame ionization detector. This article describes some of the key changes made to the USP published procedures, including use of dimethyl sulfoxide (DMSO) or dimethylformamide (DMF) as the solvent, addition of 5 mL of water and 1 mL of sample (dissolved in DMSO or DMF) to the headspace vial, use of a 3:1 GC split ratio, and use of new matrix-matched system suitability solutions. These procedures were verified with two different active pharmaceutical ingredients—hydroxyzine pamoate and prednisone. In the investigation, the more polar material (hydroxyzine pamoate) showed greater recoveries for the optimized procedures when prepared in DMSO. The less polar material (prednisone) typically had greater recoveries in DMF for the optimized procedures. During experimentation, insights into sample preparation, additional types of headspace instrumentation, solvent purity, and other parameters were also gained.  相似文献   
7.
8.
A preliminary investigation on the possibility of using volatile organic compounds (VOCs) determination of expired air, blood and urine, for the early location of entrapped people in earthquakes, has been carried out. A group of 15 healthy subjects has been sampled. The identification of a common "core" of substances might provide indications of human presence that can be used for the development of a real time field analytical method for the on site detection of entrapped people. Expired air samples have been analyzed by thermal desorption GC/MS and VOCs from blood and urine by headspace SPME-GC/MS. Acetone was the only compound found common in all three matrices. Isoprene was found in both expired air and blood samples. Acetone and isoprene along with a number of saturated hydrocarbons were among the major constituents identified in expired air analysis. Various ketones (2-pentanone, 4-heptanone, 2-butanone) were also determined over urine specimens. Using the techniques and methods of field analytical chemistry and technology appears to be the proper approach for applying the results of the present study in real situations.  相似文献   
9.
Over the last few years there has been an increasing effort in identifying environmental and occupational carcinogenic agents and linking them to the incidence of a variety of human cancers. The carcinogenic process itself is multistage and rather complex involving several different mechanisms by which various carcinogenic agents exert their effect. Amongst them are epigenetic mechanisms often involving silencing of tumor suppressor genes and/or activation of proto-oncogenes, respectively. These alterations in gene expression are considered critical during carcinogenesis and have been observed in many environmental- and occupational-induced human cancers. Some of the underlying mechanisms proposed to account for such differential gene expression include alterations in DNA methylation and/or histone modifications. Throughout this article, we aim to provide a current account of our understanding on how the epigenetic pathway is involved in contributing to an altered gene expression profile during human carcinogenesis that ultimately will allow us for better cancer diagnostics and therapeutic strategies.  相似文献   
10.
The isothiocyanates sulforaphane and PEITC (beta-phenethyl isothiocyanate) as well as the indoles indole-3-carbinol and its condensation product 3,3'-diindolylmethane are known to inhibit cancer cell proliferation and induce apoptosis. In this study, we compared the cell growth inhibitory potential of the four compounds on the p53 wild type human colon cancer cell line 40-16 (p53(+/+)) and its p53 knockout derivative 379.2 (p53(-/-)) (both derived from HCT116). Using sulforhodamin B staining to assess cell proliferation, we found that the isothiocyanates were strongly cytotoxic, whereas the indoles inhibited cell growth in a cytostatic manner. Half-maximal inhibitory concentrations of all four compounds in both cell lines ranged from 5-15 microM after 24, 48 and 72 h of treatment. Apoptosis induction was analyzed by immunoblotting of poly(ADP-ribose)polymerase (PARP). Treatment with sulforaphane (15 microM), PEITC (10 microM), indole-3-carbinol (10 microM) and 3,3'-diindolylmethane (10 microM) induced PARP cleavage after 24 and 48 h in both 40-16 and the 379.2 cell lines, suggestive of a p53-independent mechanism of apoptosis induction. In cultured 40-16 cells, activation of caspase-9 and -7 detected by Western blotting indicated involvement of the mitochondrial pathway. We detected time- and concentration-dependent changes in protein expression of anti-apoptotic Bcl-x(L) as well as pro-apoptotic Bax and Bak proteins. Of note is that for sulforaphane only, ratios of pro- to anti-apoptotic Bcl-2 family protein levels directly correlated with apoptosis induction measured by PARP cleavage. Taken together, we demonstrated that the glucosinolate breakdown products investigated in this study have distinct profiles of cell growth inhibition, potential to induce p53-independent apoptosis and to modulate Bcl-2 family protein expression in human colon cancer cell lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号