首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2012年   2篇
  2010年   3篇
  2007年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Leuconostoc (Lc.) mesenteroides TA33a produced three bacteriocins with different inhibitory activity spectra. Bacteriocins were purified by adsorption/desorption from producer cells and reverse phase high-performance liquid chromatography. Leucocin C-TA33a, a novel bacteriocin with a predicted molecular mass of 4598 Da, inhibited Listeria and other lactic acid bacteria (LAB). Leucocin B-TA33a has a predicted molecular mass of 3466 Da, with activity against Leuconostoc/Weissella (W.) strains, and appears similar to mesenterocin 52B and dextranicin 24, while leucocin A-TA33a, which also inhibited Listeria and other LAB strains, is identical to leucocin A-UAL 187. A survey of other known bacteriocin-producing Leuconostoc/Weissella strains for the presence of the three different bacteriocins revealed that production of leucocin A-, B- and C-type bacteriocins was widespread. Lc. carnosum LA54a, W. paramesenteroides LA7a, and Lc. gelidum UAL 187-22 produced all three bacteriocins, whereas W. paramesenteroides OX and Lc. carnosum TA11a produced only leucocin A- and B-type bacteriocins. Received: 11 April 1997 / Accepted: 10 June 1997  相似文献   
2.
3.
To date, the majority of HIV-1 phenotypic resistance testing has been performed with subtype B virus backbones (e.g. HXB2). However, the relevance of using this backbone to determine resistance in non-subtype B HIV-1 viruses still needs to be assessed. From 114 HIV-1 subtype C clinical samples (36 ARV-naïve, 78 ARV-exposed), pol amplicons were produced and analyzed for phenotypic resistance using both a subtype B- and C-backbone in which the pol fragment was deleted. Phenotypic resistance was assessed in resulting recombinant virus stocks (RVS) for a series of antiretroviral drugs (ARV''s) and expressed as fold change (FC), yielding 1660 FC comparisons. These Antivirogram® derived FC values were categorized as having resistant or sensitive susceptibility based on biological cut-off values (BCOs). The concordance between resistance calls obtained for the same clinical sample but derived from two different backbones (i.e. B and C) accounted for 86.1% (1429/1660) of the FC comparisons. However, when taking the assay variability into account, 95.8% (1590/1660) of the phenotypic data could be considered as being concordant with respect to their resistance call. No difference in the capacity to detect resistance associated with M184V, K103N and V106M mutations was noted between the two backbones. The following was concluded: (i) A high level of concordance was shown between the two backbone phenotypic resistance profiles; (ii) Assay variability is largely responsible for discordant results (i.e. for FC values close to BCO); (iii) Confidence intervals should be given around the BCO''s, when assessing resistance in HIV-1 subtype C; (iv) No systematic resistance under- or overcalling of subtype C amplicons in the B-backbone was observed; (v) Virus backbone subtype sequence variability outside the pol region does not contribute to phenotypic FC values. In conclusion the HXB2 virus backbone remains an acceptable vector for phenotyping HIV-1 subtype C pol amplicons.  相似文献   
4.
The β‐subunit of the human eukaryotic elongation factor 1 complex (heEF1β) plays a central role in the elongation step in eukaryotic protein biosynthesis, which essentially involves interaction with the α‐ and γ‐subunits (eEF1γ). To biophysically characterize heEF1β, we constructed 3 Escherichia coli expression vector systems for recombinant expression of the full length (FL‐heEF1β), N‐terminus (NT‐heEF1β), and the C‐terminus (CT‐heEF1β) regions of the protein. Our results suggest that heEF1β is predominantly alpha‐helical and possesses an accessible hydrophobic cavity in the CT‐heEF1β. Both FL‐heEF1β and NT‐heEF1β form dimers of size 62 and 30 kDa, respectively, but the CT‐heEF1β is monomeric. FL‐heEF1β interacts with the N‐terminus glutathione transferase‐like domain of heEF1γ (NT‐heEF1γ) to form a 195‐kDa complex or a 230‐kDa complex in the presence of oxidized glutathione. On the other hand, NT‐heEF1β forms a 170‐kDa complex with NT‐heEF1γ and a high molecular weight aggregate of size greater than 670 kDa. Surface plasmon resonance analysis confirmed that (by fitting the Langmuir 1:1 model) FL‐heEF1β associated with monomeric or dimeric NT‐heEF1γ at a rapid rate and slowly dissociated, suggesting strong functional affinity (KD = 9.6 nM for monomeric or 11.3 nM for dimeric NT‐heEF1γ). We postulate that the N‐terminus region of heEF1β may be responsible for its dimerization and the C‐terminus region of heEF1β modulates the formation of an ordered heEF1β‐γ oligomer, a structure that may be essential in the elongation step of eukaryotic protein biosynthesis.  相似文献   
5.
HIV-1 enters cells via interaction between the trimeric envelope (Env) glycoprotein gp120/gp41 and the host cell surface receptor molecule CD4. The requirement of CD4 for viral entry has rationalized the development of recombinant CD4-based proteins as competitive viral attachment inhibitors and immunotherapeutic agents. In this study, we describe a novel recombinant CD4 protein designed to bind gp120 through a targeted disulfide-exchange mechanism. According to structural models of the gp120-CD4 receptor complex, substitution of Ser60 on the CD4 domain 1 α-helix with Cys positions a thiol in proximity of the gp120 V1/V2 loop disulfide (Cys126–Cys196), satisfying the stereochemical and geometric conditions for redox exchange between CD4 Cys60 and gp120 Cys126, and the consequent formation of an interchain disulfide bond. In this study, we provide experimental evidence for this effect by describing the expression, purification, refolding, receptor binding and antiviral activity analysis of a recombinant two-domain CD4 variant containing the S60C mutation (2dCD4-S60C). We show that 2dCD4-S60C binds HIV-1 gp120 with a significantly higher affinity than wild-type protein under conditions that facilitate disulfide exchange and that this translates into a corresponding increase in the efficacy of CD4-mediated viral entry inhibition. We propose that targeted redox exchange between conserved gp120 disulfides and nucleophilic moieties positioned strategically on CD4 (or CD4-like scaffolds) conceptualizes a new strategy in the development of high affinity HIV-1 Env ligands, with important implications for therapy and vaccine development. More generally, this chalcogen substitution approach provides a general means of stabilizing receptor-ligand complexes where the structural and biophysical conditions for disulfide exchange are satisfied.  相似文献   
6.
7.

Importance

A number of officially approved disease-modifying drugs (DMD) are currently available for the early intervention in patients with relapsing-remitting multiple sclerosis (RRMS). The aim of the present study was to systematically evaluate the effect of DMDs on disability progression in RRMS

Methods

We performed a systematic review on MEDLINE and SCOPUS databases to include all available placebo-controlled randomized clinical trials (RCTs) of RRMS patients that reported absolute numbers or percentages of disability progression during each study period. Observational studies, case series, case reports, RCTs without placebo subgroups and studies reporting the use of RRMS therapies that are not still officially approved were excluded. Risk ratios (RRs) were calculated in each study protocol to express the comparison of disability progression in RRMS patients treated with a DMD and those RRMS patients receiving placebo. The mixed-effects model was used to calculate both the pooled point estimate in each subgroup and the overall estimates.

Results

DMDs for RRMS were found to have a significantly lower risk of disability progression compared to placebo (RR = 0.72, 95%CI: 0.66–0.79; p<0.001), with no evidence of heterogeneity or publication bias. In subsequent subgroup analyses, neither dichotomization of DMDs as “first” and “second” line RRMS therapies [(RR = 0.72, 95% CI = 0.65–0.80) vs. (RR = 0.72, 95% = 0.57–0.91); p = 0.96] nor the route of administration (injectable or oral) [RR = 0.75 (95% CI = 0.64–0.87) vs. RR = 0.74 (95% CI = 0.66–0.83); p = 0.92] had a differential effect on the risk of disability progression. Either considerable (5–20%) or significant (>20%) rates of loss to follow-up were reported in many study protocols, while financial and/or other support from pharmaceutical industries with a clear conflict of interest on the study outcomes was documented in all included studies.

Conclusions

Available DMD are effective in reducing disability progression in patients with RRMS, independently of the route of administration and their classification as “first” or “second” line therapies. Attrition bias needs to be taken into account in the interpretation of these findings.  相似文献   
8.
9.

Background

The knowledge-base of emerging drug resistance profiles in children exposed to abacavir-based antiretroviral regimens in South Africa is very limited. This study investigated the suitability of didanosine-based 2nd-line regimens for children in the context of antiretroviral drug resistance patterns emerging after 1st-line virologic failure.

Methods

A retrospective dataset of 354 antiretroviral drug resistant genotypes from children failing either abacavir (n = 81) or stavudine (n = 273) based 1st-line regimens, was analysed. Samples were sent to the HIV genotyping laboratory at Charlotte Maxeke Johannesburg Academic Hospital, for routine testing. Pol sequences were submitted to the Stanford HIV drug resistance database for genotypic predictions.

Results

Children were exposed to abacavir or stavudine-based 1st-line regimens for an average of 21 and 36 months, respectively. The frequency of reduced susceptibility to didanosine was substantial in the abacavir-exposed group (69.1%).This reduced susceptibility was commonly attributed to L74V/I (n = 44) and to a lesser extent K65R (n = 10) mutations. Didanosine resistance was observed in 43.2% of patients exposed to stavudine-based regimens. In contrast, most children remained susceptible to stavudine regardless of exposure to abacavir (77.8%) or stavudine (74.7%). At least 80% of children remained susceptible to zidovudine irrespective of stavudine or abacavir-exposure. The presence of the K65R mutation was more common after abacavir pressure (12.3% vs 1.8%).

Conclusion

Analysis revealed that didanosine-based 2nd-line regimens have limitations for South African children, given the high frequency of mutations that confer cross-resistance to didanosine; especially after abacavir-exposure. This data has influenced South African paediatric treatment guidelines, which now recommend zidovudine-based 2nd-line regimens.  相似文献   
10.
Stomach motility contributes significantly to fullness sensation while eating and cessation of food intake in humans. Genes controlling adrenergic and serotonergic mechanisms (ADRA2A, GNB3, and SLC6A4) affect gastric emptying (GE), volume (GV), and satiation. Fat mass and obesity‐associated gene (FTO) is linked with satiety. Our aim was to examine the association of these candidate genes with stomach functions that signal postprandial fullness: GE, GV, and maximum tolerated volume (MTV). These biomarkers constitute a component of the intermediate phenotype of satiation. A total of 62 overweight or obese participants underwent genotyping of the candidate genes, and validated measurements of GE of solids and liquids by scintigraphy, fasting and postprandial change in GV by SPECT (single photon emission computed tomography), and MTV by nutrient drink test. These markers of satiation were compared for 38 genetic variants in ADRA2A, ADR2C, ADRB3, uncoupling protein (UCP)‐2 and ‐3, GNB3, FTO, and SLC6A4 using a recessive model of inheritance. ADRA2A, ADR2C, UCP‐3, GNB3, and FTO loci were significantly associated with the intermediate phenotype markers of satiation: ADR2C (Ins‐Del322_325) with accelerated GE; GNB3 (rs1047776) with delayed GE; ADRA2A (rs491589 and rs553668) and GNB3 (rs2269355, rs10849527, and rs3759348) with decreased postprandial GV; ADRA2A (rs3750625) and GNB3 (rs4963517 and rs1129649) with increased postprandial GV; UCP‐3 (rs1685356) with increased MTV, and FTO (rs9939609) decreased MTV. Genetic susceptibility to postprandial satiation can be identified through intermediate phenotype markers. With independent validation, these markers may guide patient selection of weight‐loss therapies directed at gastric motor functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号