首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   5篇
  国内免费   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2013年   4篇
  2012年   4篇
  2011年   1篇
  2010年   4篇
  2009年   4篇
  2008年   8篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1981年   4篇
  1979年   1篇
  1975年   1篇
  1973年   2篇
  1968年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
1.
The biosynthesis and oligosaccharide structure of the human complement regulatory glycoprotein decay-accelerating factor (DAF) were studied in erythrocytes and cell lines. Initial information relative to carbohydrate moieties of DAF was obtained by enzymatic digestions. The 74,000 Mr erythrocyte DAF was lowered 3000 by endoglycosidase F, whereas endoglycosidase H had no effect, indicating one N-linked complex-type unit. Treatment with endo-alpha-N-acetylgalactosaminidase to remove O-linked oligosaccharides resulted in a 48,000 Mr molecule (67% of the Mr shift being due to sialic acid), which decreased to 45,000 Mr after sequential endoglycosidase F treatment. To additionally define the oligosaccharide structure and identify precursors in biosynthetic pathways, DAF was studied in the HL-60 cell line differentiated by vitamin D toward monocytes. Pulse-chase experiments with [35S]methionine revealed a precursor species of 43,000 Mr that underwent an early post-translational modification to a 46,000 Mr intermediate, and subsequently was chased into a mature species of 80,000 Mr that aligned with 125I surface-labeled DAF from these cells. All three forms of DAF were approximately 3000 lower in Mr in the presence of tunicamycin. The two lower Mr DAF species were sensitive to endoglycosidases F and H but not to neuraminidase or endo-alpha-N-acetylgalactosaminidase. In summary, DAF is synthesized as a 43,000 Mr precursor species containing one N-linked high-mannose unit. Before entering the central region of the Golgi, it is converted to a 46,000 Mr species by an as yet unknown post-translational modification. The 46,000 Mr form is converted to the 74,000 Mr (erythrocyte) or 80,000 Mr (leukocyte) membrane form of DAF by the addition of multiple, sialylated O-linked oligosaccharide chains (responsible for the large electrophoretic mobility shift) and conversion of the single N-linked high-mannose unit to a complex-type structure. The cell-specific Mr variation between red and white blood cells arises during this post-translational modification from the 46,000 Mr biosynthetic intermediate to the mature DAF species expressed on the cell surface.  相似文献   
2.
To characterize further some of the factors affecting lung tissue soluble-gas rebreathing volume (Vlt), we determined the solubility of acetylene in blood and lung tissue, the influence of the presence of pulmonary edema on tissue solubility, the effects of varying tidal volume (VT), and the tissue volume actually measured in two groups of six anesthetized paralyzed dogs: controls (C) and oleic acid-induced pulmonary edema (OA). Each animal's solubility was used to compute Vlt for comparison with gravimetric lung weight (Ql) and extravascular lung water content (Qwl). Solubility at 37.5 degrees C in blood (0.125 ml X 100 ml-1 X Torr-1) exceeded that in lung tissue (P less than 0.005): C = 0.118 and OA = 0.112 ml X 100 ml-1 X Torr-1 (NS). Vlt, expressed as %Ql, increased with increasing VT (20, 35, and 50 ml/kg) in OA (62.2, 78.9, and 94.7%, respectively, P less than 0.0001) but not in C (92.4, 94.4, and 99.3%, respectively). We conclude that solubility differs in blood and lung tissue but not in normal and edematous lungs, Vlt is not affected by VT in normal dogs but is in those with pulmonary edema, and Vlt measures Ql rather than Qwl.  相似文献   
3.
4.
WhileEscherichia coli is common as a commensal organism in the distal ileum and colon, the presence of colonization factors (CF) on pathogenic strains ofE. coli facilitates attachment of the organism to intestinal receptor molecules in a species- and tissue-specific fashion. After the initial adherence, colonization occurs, and the involvement of additional virulence determinants leads to illness. EnterotoxigenicE. coli (ETEC) is the most extensively studied of the five categories ofE. coli that cause diarrheal disease, and has the greatest impact on health worldwide. ETEC can be isolated from domestic animals and humans. The biochemistry, genetics, epidemiology, antigenic characteristics, and cell and receptor binding properties of ETEC have been extensively described. Another major category, enteropathogenicE. coli (EPEC), has virulence mechanisms, primarily effacement and cytoskeletal rearrangement of intestinal brush borders, that are distinct from ETEC. An EPEC CF receptor has been purified and characterized as a sialidated transmembrane glycoprotein complex directly attached to actin, thereby associating CF-binding with host-cell response. Three, additional categories ofE. coli diarrheal disease, their colonization factors and their host cell receptors are discussed. It appears that biofilms exist in the intestine in a manner similar to oral bacterial biofilms, and thatE. coli is part of these biofilms as both commensals and pathogens.Abbreviations CF colonization factor - CFA Colonization Factor Antigen - CS coli-surface-associated antigen - EAggEC enteroaggregativeE. coli - ECDD E. coli diarrheal disease - EHEC enterohemorrhagicE. coli - EIEC enteroinvasiveE. coli - EPEC enteropathogenicE. coli - ETEC enterotoxigenicE. coli - Gal galactose - GalNAc N-acetyl galactosamine - LT heat-labile toxin - NeuAc N-acetyl neuraminic acid - PCF Putative colonization factor - RBC red blood cells - SLT Shiga-like toxin - ST heat-stable toxin  相似文献   
5.
Rat fibroblasts degraded human low density lipoprotein (LDL) very slowly, one-tenth to one-fortieth the rates observed in human fibroblasts. In rat cells, human LDL caused only very small increases in cell cholesterol content and acylCoA:cholesterol acyltransferase (ACAT) activity and caused only small decreases in beta-hydroxy-beta-methylglutaryl CoA (HMG CoA) reductase activity; in human cells, however, human LDL induced very large changes in all three of these parameters, as expected. The binding of human LDL to rat fibroblasts was not reduced by previous incubation with human LDL or with 25-hydroxycholesterol. Thus, in rat fibroblasts there appear to be few, if any, regulated high-affinity receptors that recognize human LDL. Rat LDL fractions (d 1.02-1.05 g/ml), in contrast, were degraded more rapidly than human LDL by rat fibroblasts, caused a significant increase in cell cholesterol content, an increase in ACAT activity, and a significant decrease in HMG CoA reductase activity. Moreover, the degradation of this rat LDL fraction by rat fibroblasts as a function of concentration was biphasic, i.e., there appeared to be a high-affinity component of degradation. Thus, it appears that rat fibroblasts do have a receptor for homologous lipoproteins. However, because both apoprotein B and apoprotein E are present in these rat lipoprotein fractions, the observed effects may relate to recognition of either or both of these apoproteins. The metabolism and metabolic effects of the conventionally defined high density lipoprotein (HDL) fraction of the rat by rat or human fibroblasts resembled those of human LDL in human fibroblasts. It is suggested that rat HDL may, because of its apo E content and higher concentration in rat plasma relative to that of LDL, play an important role in cholesterol homeostasis in vivo.  相似文献   
6.
We examined gazelle peripheral blood leucocytes using the α-Naphthyl acetate esterase (ANAE) staining technique (pH 5.8). Our purpose was to determine the percentage of ANAE positive lymphocytes. The proportion of ANAE positive T-lymphocytes was 72%. T-lymphocytes showed an ANAE positive reaction, but eosinophilic granulocytes and monocytes also showed a positive reaction. By contrast, no reaction was detected in B-lymphocytes, neutrophil granulocytes or platelets. The reaction observed in T-lymphocytes was a red-brown coloration, usually 1–2 granules, but enough granules to fill the cytoplasm were detected rarely. As a result of ANAE enzyme staining, we concluded that the staining technique can be used as a cytochemical marker for gazelle T-lymphocytes.  相似文献   
7.
8.
Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson''s disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser65) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser111) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser111 of each of the Rabs, we demonstrate that Rab Ser111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser65. We further show mechanistically that phosphorylation at Ser111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser111 may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson''s disease.  相似文献   
9.

Background and methods

Human metapneumovirus (hMPV) is a recently discovered respiratory virus associated with bronchiolitis, pneumonia, croup and exacerbations of asthma. Since respiratory viruses are frequently detected in patients with acute exacerbations of COPD (AE-COPD) it was our aim to investigate the frequency of hMPV detection in a prospective cohort of hospitalized patients with AE-COPD compared to patients with stable COPD and to smokers without by means of quantitative real-time RT-PCR.

Results

We analysed nasal lavage and induced sputum of 130 patients with AE-COPD, 65 patients with stable COPD and 34 smokers without COPD. HMPV was detected in 3/130 (2.3%) AE-COPD patients with a mean of 6.5 × 105 viral copies/ml in nasal lavage and 1.88 × 105 viral copies/ml in induced sputum. It was not found in patients with stable COPD or smokers without COPD.

Conclusion

HMPV is only found in a very small number of patients with AE-COPD. However it should be considered as a further possible viral trigger of AE-COPD because asymptomatic carriage is unlikely.  相似文献   
10.
The plasma protein factor H primarily controls the activation of the alternative pathway of complement. The C-terminal of factor H is known to be involved in protection of host cells from complement attack. In the present study, we show that domains 19-20 alone are capable of discriminating between host-like and complement-activating cells. Furthermore, although factor H possesses three binding sites for C3b, binding to cell-bound C3b can be almost completely inhibited by the single site located in domains 19-20. All of the regulatory activities of factor H are expressed by the N-terminal four domains, but these activities toward cell-bound C3b are inhibited by isolated recombinant domains 19-20 (rH 19-20). Direct competition with the N-terminal site is unlikely to explain this because regulation of fluid phase C3b is unaffected by domains 19-20. Finally, we show that addition of isolated rH 19-20 to normal human serum leads to aggressive complement-mediated lysis of normally nonactivating sheep erythrocytes and moderate lysis of human erythrocytes, which possess membrane-bound regulators of complement. Taken together, the results highlight the importance of the cell surface protective functions exhibited by factor H compared with other complement regulatory proteins. The results may also explain why atypical hemolytic uremic syndrome patients with mutations affecting domains 19-20 can maintain complement homeostasis in plasma while their complement system attacks erythrocytes, platelets, endothelial cells, and kidney tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号