首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   5篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   3篇
  2014年   3篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2007年   1篇
排序方式: 共有42条查询结果,搜索用时 312 毫秒
1.
Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha−1 year−1; 95% confidence interval [CI] 2.36–5.25) of total AGB loss (8.72 Mg ha−1 year−1; CI 5.57–12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%–17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%–57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%–80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.  相似文献   
2.

Cancer has presented to be the most challenging disease, contributing to one in six mortalities worldwide. The current treatment regimen involves multiple rounds of chemotherapy administration, alone or in combination. The treatment has adverse effects including cardiomyopathy, hepatotoxicity, and nephrotoxicity. In addition, the development of resistance to chemo has been attributed to cancer relapse and low patient overall survivability. Multiple drug resistance development may be through numerous factors such as up-regulation of drug transporters, drug inactivation, alteration of drug targets and drug degradation. Doxorubicin is a widely used first line chemotherapeutic drug for a myriad of cancers. It has multiple intracellular targets, DNA intercalation, adduct formation, topoisomerase inhibition, iron chelation, reactive oxygen species generation and promotes immune mediated clearance of the tumor. Agents that can sensitize the resistant cancer cells to the chemotherapeutic drug are currently the focus to improve the clinical efficiency of cancer therapy. This review summarizes the recent 10-year research on the use of natural phytochemicals, inhibitors of apoptosis and autophagy, miRNAs, siRNAs and nanoformulations being investigated for doxorubicin chemosensitization.

  相似文献   
3.
4.
Insect societies are hallmarks of cooperation because one or a few queens monopolize reproduction and several non-reproductive workers cooperatively raise brood. However, the loss of the queen exposes a colony to potential reproductive conflict, which is resolved only after a new queen takes over. We studied queen succession in natural and experimental colonies of the primitively eusocial wasp Ropalidia marginata to understand the proximate behavioral strategies involved in the resolution of this conflict. Previous work has shown that in this species, experimental queen removal always results in only one worker becoming hyper-aggressive and taking over the colony as its next queen, without ever being challenged. Here we show that even during natural queen turnover, one and only one worker becomes hyper-aggressive and takes over as the next queen, without being challenged. During natural queen turn-over, aggression of the successor may sometimes begin before the loss of the old queen and may sometimes decline more rapidly, unlike in the case of experimental queen removal. The successor begins to lay eggs sooner after a natural queen turn-over as compared to experimental queen removal. This is expected because workers might detect the gradual decline of the queen preceding her disappearance. Because queen succession is expected to be more prevalent in tropical perennial species, we expect natural selection to have favored such an orderly queen succession so that a route to direct fitness is available without significant reduction in cooperation.  相似文献   
5.
Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity.  相似文献   
6.
Pathogen infection triggers host innate defenses which may result in the activation of regulated cell death (RCD) pathways such as apoptosis. Given a vital role in immunity, apoptotic effectors are often counteracted by pathogen-encoded antagonists. Mounting evidence indicates that programmed necrosis, which is mediated by the RIPK3/MLKL axis and termed necroptosis, evolved as a countermeasure to pathogen-mediated inhibition of apoptosis. Yet, it is unclear whether components of this emerging RCD pathway display signatures associated with pathogen conflict that are rare in combination but common to key host defense factors, namely, rapid evolution, viral homolog (virolog), and cytokine induction. We leveraged evolutionary sequence analysis that examines rates of amino acid replacement, which revealed: 1) strong and recurrent signatures of positive selection for primate and bat RIPK3 and MLKL, and 2) elevated rates of amino acid substitution on multiple RIPK3/MLKL surfaces suggestive of past antagonism with multiple, distinct pathogen-encoded inhibitors. Furthermore, our phylogenomics analysis across poxvirus genomes illuminated volatile patterns of evolution for a recently described MLKL viral homolog. Specifically, poxviral MLKLs have undergone numerous gene replacements mediated by duplication and deletion events. In addition, MLKL protein expression is stimulated by interferons in human and mouse cells. Thus, MLKL displays all three hallmarks of pivotal immune factors of which only a handful of factors like OAS1 exhibit. These data support the hypothesis that over evolutionary time MLKL functions—which may include execution of necroptosis—have served as a major determinant of infection outcomes despite gene loss in some host genomes.  相似文献   
7.
Inorganic cesium lead halide perovskites have evoked wide popularity because of their excellent optoelectronic properties, high photoluminescence (PL) quantum yield (PLQY), and narrowband emission. Here, cesium lead bromide (CsPbBr3) quantum dots (QDs) were synthesized via the ligand-assisted re-precipitation method. Post-synthesis treatment of CsPbBr3 QDs using antimony tribromide improved the PL stability and optoelectronic properties of the QDs. In addition, the PLQY of the post-treated sample was enhanced to 91% via post-treatment, and the luminescence observed was maintained for 8 days. The post-synthesis treatment ensured defect passivation and improved the stability of CsPbBr3 perovskite QDs. High-resolution transmission electron microscopy revealed the presence of more ordered, uniform-sized CsPbBr3 QDs after post-synthesis treatment, and the uniformity of the sample improved as the day passed. The formation of a mixed crystal phase was observed from X-ray diffraction in both as-synthesized, as well as post-treated QDs samples with the possibility of a polycrystalline nature in the post-treated CsPbBr3 QDs as per the selected area electron diffraction pattern. The X-ray photoelectron spectroscopy spectra confirmed the presence of antimony and the possibility of defect passivation in the post-treated samples. These QDs can act as potential candidates in various optoelectronic applications such as photodetectors and light-emitting diodes due to their high PLQY and longer lifetime.  相似文献   
8.
9.
Understanding how wheat (Triticum aestivum L.) plants under high temperature (HT) regulate lipid composition is critical to developing climate‐resilient varieties. We measured 165 glycerolipids and sterol derivatives under optimum and high day and night temperatures in wheat leaves using electrospray ionization‐tandem mass spectrometry. Levels of polar lipid fatty acyl chain unsaturation were lower in both heat‐tolerant genotype Ventnor and susceptible genotype Karl 92 under HT, compared with optimum temperature. The lower unsaturation was predominantly because of lower levels of 18:3 acyl chains and higher levels of 18:1 and 16:0 acyl chains. Levels of 18:3‐containing triacylglycerols increased threefold/more under HT, consistent with their possible role in sequestering fatty acids during membrane lipid remodelling. Phospholipids containing odd‐numbered or oxidized acyl chains accumulated in leaves under HT. Sterol glycosides (SG) and 16:0‐acylated sterol glycosides (ASG) were higher under HT than optimum temperatures. Ventnor had lower amounts of phospholipids with oxidized acyl chains under HT and higher amounts of SG and 16:0‐ASG than Karl 92. Taken together, the data demonstrate that wheat leaf lipid composition is altered by HT, in which some lipids are particularly responsive to HT, and that two wheat genotypes, chosen for their differing physiological responses to HT, differ in lipid profile under HT.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号