首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   5篇
  157篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2017年   1篇
  2016年   1篇
  2015年   7篇
  2014年   8篇
  2013年   10篇
  2012年   12篇
  2011年   6篇
  2010年   10篇
  2009年   9篇
  2008年   15篇
  2007年   11篇
  2006年   12篇
  2005年   9篇
  2004年   8篇
  2003年   7篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1989年   2篇
  1985年   2篇
  1982年   1篇
  1978年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
1.
Lectin-receptors on leukocyte and endothelial surfaces are becoming more important in the light of increasing evidence which implicates lectin-carbohydrate interactions in diverse physiological phenomena. This study reports the identification of a major 118 kDa granulocyte surface protein, (Protein 1a) which binds the lectin wheat germ agglutinin (WGA), and is distinctly different from reported WGA binding granulocyte membrane proteins. Protein 1a has been isolated from the Triton-soluble and Triton-insoluble lysates of normal individuals and patients with Chronic Myeloid Leukemia (CML) using a combination of differential solubilization, lectin affinity, ion exchange chromatography and HPLC. The protein from the detergent lysates of both normal and CML granulocytes has similar pI values, lectin affinities, and hydrophobicity. However, its solubility in Triton is different in the two cell types. In 71% of CML cases examined, Protein 1a exhibits decreased Triton solubility suggesting its increased association with the cytoskeleton (CSK). Stimulation of normal granulocytes with WGA leads to the translocation of the soluble form of Protein 1a to the Triton-insoluble fraction. This cytoskeletal recruitment of Protein 1a is sustained only under conditions of excess WGA and occupied receptor. The CSK disruptive agent dihydrocytochalasin B (H2CB) releases the insoluble form of the receptor into the Triton-soluble fraction. Investigation of a CSK-involving process such as ligand internalization revealed that CML granulocytes exhibit slower kinetics of internalization of fluorescent WGA molecules. Since Protein 1a is a major WGA receptor on the granulocyte surface, its decreased Triton solubility in CML granulocytes suggests that this may be one of the factors contributing to the defective receptor-mediated endocytosis of WGA by CML cells, arising as a consequence of altered membrane-CSK interaction — a nodal point in the signal transduction cascade.  相似文献   
2.
Summary The seven possible primary trisomics of Petunia (2 n= 14) located in the progenies of triploid, hypertriploid and hypotriploid plants were distinguished from one another and from diploid on the basis of cytological and morphological criteria. They were provisionally named as Oval, Semi, Slender, Pseudonormal, Arrow, Narrow and Giant. In three of the trisomics, the extra chromosome was identified for the first time at pachytene stage. Postpachytene studies revealed no precise relationship between the length of extra chromosome and the frequency of multiple association.  相似文献   
3.
Mechanical scarification of seeds ofPhaseolus mungo L. resulted in 100 per cent gormination in comparison to 90 per cent dormant control. Seeds treated with concentrated sulphuric acid for 8 min led to 85 per cent germination. Heat treatment at 70 °C for 24 h exhibited 75 per cent gormination, while boiled water treatment for 7 min caused 65 per cent germination.  相似文献   
4.
Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their implication in signaling pathways is still partial. The crosstalk between NO and ROS during root formation offers new domains to be explored, as it regulates several plant functions. Previous findings indicate that plants utilize these signaling molecules for regulating physiological responses and development. Depending upon cellular concentration, NO either can stimulate or impede root system architecture (RSA) by modulating enzymes through post-translational modifications. Similarly, the ROS signaling molecule network, in association with other hormonal signaling pathways, control the RSA. The spatial regulation of ROS controls cell growth and ROS determine primary root and act in concert with NO to promote lateral root primordia. NO and ROS are two central messenger molecules which act differentially to upregulate or downregulate the expression of genes pertaining to auxin synthesis and to the configuration of root architecture. The investigation concerning the contribution of donors and inhibitors of NO and ROS can further aid in deciphering their role in root development. With this background, this review provides comprehensive details about the effect and function of NO and ROS in the development of RSA.  相似文献   
5.
6.
The reciprocal t(8;13) chromosome translocation results in a fusion gene (FUS) in which the N-terminal half of the zinc finger protein ZNF198 is combined with the cytoplasmic domain of the fibroblast growth factor receptor-1 (FGFR1). Expression of FUS is suggested to provide growth-promoting activity to myeloid cells similar to the activity of hematopoietic cytokine receptors. This study determined the specificity of FUS to activate signal transduction pathways. Because no tumor cell line expressing FUS was available, the mode of FUS action was identified in cells transiently and stably transfected with an expression vector for FUS. FUS acted as a constitutively active protein-tyrosine kinase and mediated phosphorylation of STAT1, 3, and 5 but not STAT4 and 6. The same specificity but lower activity was determined for normal FGFR1. STAT activation by FUS, similar to that by interleukin-6-type cytokines, promoted STAT-specific induction of genes. The functionality of FUS, as well as the relative recruitment of STAT isoforms, was determined by the dimerizing function of the zinc finger domain. Replacement of the ZNF198 portion by the Bcr portion as present in the t(8;22) translocation shifted the signaling toward a more prominent STAT5 activation. This study documents that both gene partners forming the fusion oncogene define the activity and the signaling specificity of the protein-tyrosine kinase of FGFR1.  相似文献   
7.
The scattering density of the virus is represented as a truncated weighted sum of orthonormal basis functions in spherical coordinates, where the angular dependence of each basis function has icosahedral symmetry. A statistical model of the image formation process is proposed and the maximum likelihood estimation method computed by an expectation-maximization algorithm is used to estimate the weights in the sum and thereby compute a 3-D reconstruction of the virus particle. If multiple types of virus particle are represented in the boxed images then multiple 3-D reconstructions are computed simultaneously without first requiring that the type of particle shown in each boxed image be determined. Examples of the procedure are described for viruses with known structure: (1). 3-D reconstruction of Flockhouse Virus from experimental images, (2). 3-D reconstruction of the capsid of Nudaurelia Omega Capensis Virus from synthetic images, and (3). 3-D reconstruction of both the capsid and the procapsid of Nudaurelia Omega Capensis Virus from a mixture of unclassified synthetic images.  相似文献   
8.
9.
Maintaining the integrity of the genome requires the high fidelity duplication of the genome and the ability of the cell to recognize and repair DNA lesions. The heterotrimeric single stranded DNA (ssDNA) binding complex Replication Protein A (RPA) is central to multiple DNA processes, which are coordinated by RPA through its ssDNA binding function and through multiple protein-protein interactions. Many RPA interacting proteins have been reported through large genetic and physical screens; however, the number of interactions that have been further characterized is limited. To gain a better understanding of how RPA functions in DNA replication, repair, and cell cycle regulation and to identify other potential functions of RPA, a yeast two hybrid screen was performed using the yeast 70 kDa subunit, Replication Factor A1 (Rfa1), as a bait protein. Analysis of 136 interaction candidates resulted in the identification of 37 potential interacting partners, including the cell cycle regulatory protein and DNA damage clamp loader Rad24. The Rfa1-Rad24 interaction is not dependent on ssDNA binding. However, this interaction appears affected by DNA damage. The regions of both Rfa1 and Rad24 important for this interaction were identified, and the region of Rad24 identified is distinct from the region reported to be important for its interaction with Rfc2 5. This suggests that Rad24-Rfc2-5 (Rad24-RFC) recruitment to DNA damage substrates by RPA occurs, at least partially, through an interaction between the N terminus of Rfa1 and the C terminus of Rad24. The predicted structure and location of the Rad24 C-terminus is consistent with a model in which RPA interacts with a damage substrate, loads Rad24-RFC at the 5’ junction, and then releases the Rad24-RFC complex to allow for proper loading and function of the DNA damage clamp.  相似文献   
10.
The LGI1 gene suppresses invasion in glioma cells and predisposes to epilepsy. In a gene expression array comparison between parental cells and T98G cell clones forced to express LGI1, we demonstrate that the canonical axon guidance pathway is the most significantly affected. In particular, aspects of axon guidance that involve reorganization of the actin cytoskeleton, which is also involved in cell movement and invasion, were affected. Analysis of actin fiber organization using fluorescence microscopy demonstrated that different T98G cell clones expressing the exogenous LGI1 gene show high levels of stress fibers compared with controls. Since stress fiber formation is associated with loss of cell mobility, we used scratch wound assays to demonstrate that LGI1-expressing clones show a significant reduction in cell mobility. LGI1 reexpression also resulted in loss of the PDGFRA and EGFR proteins, suggesting a rapid turnover of these receptors despite increased mRNA levels for PDGFRA. LGI1 suppression of invasion is associated with loss of ERK/MAPK1 activation. LGI1 is a secreted protein, and when the culture supernatant from cells expressing FLAG- and GFP-tagged proteins were applied to parental T98G cells, ERK/MAPK1 phosphorylation and cell mobility was suppressed, demonstrating that the LGI1 protein acts as a suppressive agent for cell movement in this assay. These observations support a previous suggestion that LGI1 can reduce cellular invasion in in vitro assays and, as a secreted agent, may be developed as a means of treating metastatic cancer. In addition, this observation provides a mechanistic link for LGI1's common role in metastasis and epilepsy development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号