首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   55篇
  2017年   2篇
  2016年   3篇
  2014年   2篇
  2013年   9篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   6篇
  2002年   6篇
  2000年   7篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   7篇
  1992年   7篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   7篇
  1986年   3篇
  1985年   12篇
  1984年   5篇
  1983年   4篇
  1982年   8篇
  1980年   6篇
  1979年   10篇
  1978年   12篇
  1977年   7篇
  1976年   4篇
  1975年   11篇
  1974年   7篇
  1973年   7篇
  1972年   7篇
  1971年   4篇
  1970年   5篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
  1966年   3篇
  1928年   1篇
排序方式: 共有255条查询结果,搜索用时 406 毫秒
1.
Biosynthesis of wax esters, one of the two major products of the meibomian gland, was found to be catalyzed mainly by the microsomes of the bovine meibomian gland. The microsomal preparation catalyzed hexadecanoyl-CoA reduction to hexadecanol without any accumulation of the aldehyde intermediate. Maximal rates of reduction occurred at pH 6.5 and required both NADH and NADPH; the latter alone gave considerable rates whereas NADH alone was ineffective. Exogenous hexadecanal reduction catalyzed by the same preparation showed a preference for NADH. The hexadecanoyl-CoA saturation pattern was slightly sigmoidal and concentrations higher than 125 microM inhibited reduction. The fatty alcohol generated from hexadecanoyl-CoA was found as free alcohol and as wax esters. Esterification of hexadecanol to wax esters catalyzed by the meibomian gland microsomal preparation required exogenous acyl-CoA or ATP and CoA and was not affected by exogenous cholesterol. Maximal rates of esterification were observed at neutral pH. Hexadecanoyl-CoA concentrations higher than 125 microM inhibited esterification. Hexadecanol showed a typical substrate saturation pattern with an apparent Km of 125 microM. Radio gas-liquid chromatography showed that, in the presence of exogenous hexadecanoyl-CoA, hexadecanol gave hexadecyl hexadecanoate whereas in the presence of ATP and CoA both C16 and C18 endogenous acids were used to esterify the alcohol. Consistent with the composition of the meibomian gland secretion, exogenous acyl-CoA longer than C14 and shorter than C20 gave maximal rates of esterification of hexadecanol.  相似文献   
2.
An anionic peroxidase (EC 1.11.1.7), thought to be involved in suberization, was purified 110-fold from wound-healing slices of Solanum tuberosum by a combination of ammonium sulfate fractionation, Sephadex G-100 gel filtration, isoelectric focusing, and phenyl-Sepharose CL-4B chromatography in 24% yield. The purified enzyme was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and horizontal thin-layer polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 47,000 by both Sephadex G-100 gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This peroxidase was found to be a glycoprotein containing about 17% carbohydrate, approximately one-quarter of which was shown to be glucosamine residues. It was found to have an isoelectric point of 3.15. An anionic peroxidase was also isolated from abscisic acid-treated callus tissue culture of S. tuberosum by the above purification procedure. The two enzymes were shown to be immunologically similar, if not identical, based on their cross-reactivity with rabbit antibody prepared against the peroxidase from wound-healing slices, whereas the major cationic peroxidase from wound-healing slices did not cross-react with this antibody. The anionic enzyme from both sources showed very similar specific activities when assayed with a range of substrates, whereas the specific activities found for the cationic isozyme isolated from wound-healing slices were quite different.  相似文献   
3.
Green cotton (Gossypium hirsutum L.) fibers were shown by electron microscopy to have numerous thin concentric rings around the lumen of the cell. These rings possessed a lamellar fine structure characteristic of suberin. LiA1D4 depolymerization and gas chromatography-mass spectrometry analysis showed the presence of a suberin polymer in the green cotton with the major aliphatic monomers being ω-hydroxydocosanoic acid (70%) and docosanedoic acid (25%). Ordinary white cotton was shown by chemical and ultrastructural examination to be encircled by a thin cuticular polymer containing less than 0.5% of the aliphatic components found in green cotton.  相似文献   
4.
5.
6.
Oxidation of paraffins by plant tissues   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   
7.
Isobutyrate-1-14C and l-isoleucine-U-14C fed through the petiole labeled the surface lipids of broccoli leaves, but the incorporation was much less than from straight chain precursors. Not more than one-third of the 14C incorporated into the surface lipids was found in the C29 paraffin and derivatives, whereas more than two-thirds of the 14C from straight chain precursors are usually found in these compounds. The small amount of 14C incorporated into the paraffin fraction was found in the n-C29 paraffin rather than branched paraffins showing that the 14C in the paraffin must have come from degradation products. Radio gas-liquid chromatography of the saturated fatty acids showed that, in addition to the n-C16 acid which was formed from both branched precursors, isoleucine-U-14C gave rise to branched C15, C17, and C19 fatty acids, and isobutyrate-1-14C gave rise to branched C16 and C18 acids. Thus the reason for the failure of broccoli leaf to incorporate branched precursors into branched paraffins is not the unavailability of branched fatty acids, but the absolute specificity of the system that synthesizes paraffins, probably the elongation-decar-boxylation enzyme complex. Consistent with this view, no labeled branched fatty acids longer than C19 could be found in the broccoli leaf. The branched fatty acids were also found in the surface lipids indicating that the epidermal layer of cells did have access to branched chains. Thus the paraffin synthesizing enzyme system is specific for straight chains in broccoli, but the fatty acid synthetase is not.  相似文献   
8.
Biosynthesis of wax in Brassica oleracea. Relation of fatty acids to wax   总被引:5,自引:0,他引:5  
P E Kolattukudy 《Biochemistry》1966,5(7):2265-2275
  相似文献   
9.
Malonyl-CoA decarboxylase was purified from goose uropygial gland, reduced, carboxymethylated, and digested with trypsin. Several peptides were purified by high performance liquid chromatography and their amino acid sequences determined. Oligonucleotide probes were prepared based on their amino acid sequences. Size-selected RNA from the goose uropygial gland was used to construct cDNA libraries in lambda gt11 and pUC9 vectors. Immunological screening of the lambda gt11 cDNA library yielded one clone, lambda DC1, which contained a 2.2-kilobase pair insert; hybridization with the synthetic oligonucleotide probes confirmed its identity as malonyl decarboxylase. Screening of the pUC9 cDNA library with the insert of lambda DC1 as a probe detected one clone, pDC2, with an insert of 2.9 kilobase pairs. The nucleotide sequences of the two cDNAs revealed an open reading frame encoding a polypeptide of 462 amino acids. The deduced amino acid sequence was confirmed as malonyl-CoA decarboxylase by matching it to the amino acid sequences of three tryptic peptides derived from mature enzyme. Northern blot analysis of mRNA from goose brain, kidney, liver, lung, and gland revealed malonyl-decarboxylase mRNA of 3000 nucleotides. Since clone pDC2 contains a 2928-nucleotide insert, it represents nearly the full length of mRNA. Brain, kidney, lung, and liver contained less than 1% of the malonyl-CoA decarboxylase mRNA in the gland. Southern blot analysis of genomic DNA showed a single band in both liver and gland, suggesting that malonyl-CoA decarboxylase is a single copy gene.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号