首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   17篇
  国内免费   1篇
  2022年   3篇
  2021年   4篇
  2016年   4篇
  2015年   6篇
  2014年   10篇
  2013年   5篇
  2012年   11篇
  2011年   13篇
  2010年   4篇
  2009年   7篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2002年   8篇
  2001年   4篇
  2000年   4篇
  1999年   6篇
  1998年   2篇
  1992年   2篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   7篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
  1947年   2篇
  1946年   1篇
  1944年   1篇
  1942年   1篇
  1940年   3篇
  1939年   3篇
  1936年   1篇
  1935年   2篇
  1934年   2篇
  1933年   3篇
  1932年   2篇
排序方式: 共有188条查询结果,搜索用时 156 毫秒
1.
The effects of phloretin on membrane ionic conductances have been studied in the giant axon of the squid, Loligo pealei. Phloretin reversibly suppresses the potassium and sodium conductances and modifies their dependence on membrane potential (Em). Its effects on the potassium conductance (GK) are much greater than on the sodium conductance; no effects on sodium inactivation are observed. Internal perfusion of phloretin produces both greater shifts in GK(Em) and greater reductions maximum GK than does external perfusion; the effect of simultaneous internal and external perfusion is little greater than that of internal perfusion alone. Lowering the internal pH, which favors the presence of the neutral species of weakly acidic phloretin (pKa 7.4), potentiates the actions of internally perfused phloretin. Other organic cations with dipole moments similar to phloretin's have little effect on either potassium or sodium conductances in squid axons. These results can be explained by either of two mechanisms; on postulates a phloretin "receptor" near the voltage sensor component of the potassium channel which is accessible to drug molecules applied at either the outer or inner membrane surface and is much more sensitive to the neutral than the negatively charged form of the drug. The other mechanism proposes that neutral phloretin molecules are dispersed in an ordered array in the membrane interior, producing a diffuse dipole field which modifies potassium channel gating. Different experimental results support these two mechanisms, and neither hypothesis can be disproven.  相似文献   
2.
The blocking action of aminopyridines on an inactivating K current (lKi) in GH3 pituitary cells was studied before and after altering the macroscopic decay of the current with N-bromoacetamide (NBA). The first depolarizing pulse delivered either seconds or minutes after beginning 4-aminopyridine (4AP) application, elicited a current with both a more rapid decay and a reduced peak amplitude. The rapid decay (or time-dependent block) was especially prominent in NBA-treated cells. With continued drug application, subsequent test pulses revealed a stable block of peak current, greater in NBA-treated than control cells. Recovery from block was enhanced by hyperpolarizing holding potentials and by the first depolarizing pulse delivered after prolonged recovery intervals. Unlike aminopyridine block of other K currents, there was no convincing evidence for voltage shifts in activation or inactivation, or for voltage and frequency-dependent unblock. Increasing the open probability of the channels did, however, facilitate the block. Although the behavior of currents in 4AP was suggestive of "open channel block," the block was not produced by 4-aminopyridine methiodide, a positively charged aminopyridine. Moreover, because partial block and recovery occurred without opening the channels we suggest that aminopyridines bind to, or near, this K channel, that this binding is enhanced by opening the channel, and that a conformational change is induced which mimics inactivation. Because recovery from block is enhanced by negative potentials, we suggest that aminopyridine molecules may become "trapped" by inactivation awaiting the slow process of reactivation to escape their binding sites.  相似文献   
3.
To study the kinetic and steady-state properties of voltage-dependent sodium conductance activation, squid giant axons were perfused internally with either pronase or N-bromoacetamide and voltage clamped. Parameters of activation, tau m and gNa(V), and deactivation, tau Na, were measured and compared with those obtained from control axons under the assumption that gNa oc m3h of the Hodgkin-Huxley scheme. tau m(V) values obtained from the turn-on of INa agree well with control axons and previous determinations by others. tau Na(V) values derived from Na tail currents were also unchanged by pronase treatment and matched fairly well previously published values. tau m(V) obtained from 3 x tau Na(V) were much larger than tau m(V) obtained from INa turn-on at the same potentials, resulting in a discontinuous distribution. Steady-state In (gNa/gNa max - gNa) vs. voltage was not linear and had a limiting logarithmic slope of 5.3 mV/e-fold gNa. Voltage step procedures that induce a second turn-on of INa during various stages of the deactivation (Na tail current) process reveal quasiexponential activation at early stages that becomes increasingly sigmoid as deactivation progresses. For moderate depolarizations, primary and secondary activation kinetics are superimposable. These data suggest that, although m3 can describe the shape of INa turn-on, it cannot quantitatively account for the kinetics of gNa after repolarization. Kinetic schemes for gNa in which substantial deactivation occurs by a unique pathway between conducting and resting states are shown to be unlikely. It appears that the rate-limiting step in linear kinetic models of activation may be between a terminal conducting state and the adjacent nonconducting intermediate.  相似文献   
4.
The effects of aminopyridines on ionic conductances of the squid giant axon membrane were examined using voltage clamp and internal perfusion techniques. 4-Aminopyridine (4-AP) reduced potassium currents, but had no effect upon transient sodium currents. The block of potassium channels by 4-AP was substantially less with (a) strong depolarization to positive membrane potentials, (b) increasing the duration of a given depolarizing step, and (c) increasing the frequency of step depolarizations. Experiments with high external potassium concentrations revealed that the effect of 4-AP was independent of the direction of potassium ion movement. Both 3- and 2-aminopyridine were indistinguishable from 4-AP except in potency. It is concluded that aminopyrimidines may be used as tools to block the potassium conductance in excitable membranes, but only within certain specific voltage and frequency limits.  相似文献   
5.
6.
7.
Variations in markers of adolescent self-organization predict a range of economic and health-related outcomes in general population studies. Using a population-based birth cohort study we investigated associations between adolescent self-organization and two common factors over adulthood influencing health, smoking and alcohol consumption. The MRC National Survey of Health and Development (the British 1946 birth cohort) was used to test associations between a dimensional measure of adolescent self-organization derived from teacher ratings, and summary longitudinal measures of smoking and alcohol consumption over the ensuing five decades. Multinomial regression models were adjusted for sex, adolescent emotional and conduct problems, occupational social class of origin, childhood cognition, educational attainment and adult occupational social class. With all covariates adjusted, higher adolescent self-organization was associated with fewer smoking pack years, although not with quitting; there was no association with alcohol consumption across adulthood (none or heavy compared with light to moderate). Adolescent self-organization appears to be protective against smoking, but not against heavy alcohol consumption. Interpretation of this differential effect should be embedded in an understanding of the social and sociodemographic context in which these health behaviours occur over time.  相似文献   
8.
In November 2021, the COVID-19 pandemic death toll surpassed five million individuals. We applied Mendelian randomization including >3,000 blood proteins as exposures to identify potential biomarkers that may indicate risk for hospitalization or need for respiratory support or death due to COVID-19, respectively. After multiple testing correction, using genetic instruments and under the assumptions of Mendelian Randomization, our results were consistent with higher blood levels of five proteins GCNT4, CD207, RAB14, C1GALT1C1, and ABO being causally associated with an increased risk of hospitalization or respiratory support/death due to COVID-19 (ORs = 1.12–1.35). Higher levels of FAAH2 were solely associated with an increased risk of hospitalization (OR = 1.19). On the contrary, higher levels of SELL, SELE, and PECAM-1 decrease risk of hospitalization or need for respiratory support/death (ORs = 0.80–0.91). Higher levels of LCTL, SFTPD, KEL, and ATP2A3 were solely associated with a decreased risk of hospitalization (ORs = 0.86–0.93), whilst higher levels of ICAM-1 were solely associated with a decreased risk of respiratory support/death of COVID-19 (OR = 0.84). Our findings implicate blood group markers and binding proteins in both hospitalization and need for respiratory support/death. They, additionally, suggest that higher levels of endocannabinoid enzymes may increase the risk of hospitalization. Our research replicates findings of blood markers previously associated with COVID-19 and prioritises additional blood markers for risk prediction of severe forms of COVID-19. Furthermore, we pinpoint druggable targets potentially implicated in disease pathology.  相似文献   
9.
10.
Phosphoenolpyruvate carboxykinase (PEPCK) mRNA is elevated in H4IIEC3 rat hepatoma cells cultured at high density, suggesting that PEPCK expression and growth arrest may be coordinately regulated. Induction of growth arrest either by contact inhibition (high culture density) or by serum deprivation correlated with significant increases in PEPCK protein and its mRNA. The observation that PEPCK mRNA was induced by contact inhibition in the presence of serum indicates that the effect of high density is independent of insulin or any other serum component. The magnitudes of the changes in PEPCK expression during growth arrest were greatly enhanced in KRC-7 cells, an H4IIEC3 subclone that is much more sensitive to growth arrest than its parental cell line. Restimulation of proliferation in growth-arrested KRC-7 cells, either by addition of serum or insulin to serum-deprived cells or by replating contact-inhibited cells at low density, caused a rapid decrease in PEPCK expression. However, PEPCK mRNA is not always reduced in proliferating cells since treatment of serum-starved cells with epidermal growth factor stimulated entry into the cell cycle but did not affect PEPCK mRNA levels. Finally, dexamethasone induction of PEPCK mRNA was blunted in cells cultured at high density but was unaffected by the presence or absence of serum. Collectively, these data suggest the possibility of cross-talk between the control of PEPCK expression and growth arrest in KRC-7 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号