首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  国内免费   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2003年   2篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
Although microorganisms largely drive many ecosystem processes, the relationship between microbial composition and their functioning remains unclear. To tease apart the effects of composition and the environment directly, microbial composition must be manipulated and maintained, ideally in a natural ecosystem. In this study, we aimed to test whether variability in microbial composition affects functional processes in a field setting, by reciprocally transplanting riverbed sediments between low- and high-salinity locations along the Nonesuch River (Maine, USA). We placed the sediments into microbial ‘cages'' to prevent the migration of microorganisms, while allowing the sediments to experience the abiotic conditions of the surroundings. We performed two experiments, short- (1 week) and long-term (7 weeks) reciprocal transplants, after which we assayed a variety of functional processes in the cages. In both experiments, we examined the composition of bacteria generally (targeting the 16S rDNA gene) and sulfate-reducing bacteria (SRB) specifically (targeting the dsrAB gene) using terminal restriction fragment length polymorphism (T-RFLP). In the short-term experiment, sediment processes (CO2 production, CH4 flux, nitrification and enzyme activities) depended on both the sediment''s origin (reflecting differences in microbial composition between salt and freshwater sediments) and the surrounding environment. In the long-term experiment, general bacterial composition (but not SRB composition) shifted in response to their new environment, and this composition was significantly correlated with sediment functioning. Further, sediment origin had a diminished effect, relative to the short-term experiment, on sediment processes. Overall, this study provides direct evidence that microbial composition directly affects functional processes in these sediments.  相似文献   
2.
In a previous study, addition of Trichoderma harzianum Rifai isolate T-12 to a propagative medium resulted in improved performance of chrysanthemum cuttings. However, root and shoot growth of one cultivar, 'Dark Bronze Charm', were more responsive to a lower (5 g T-12/kg medium) than higher (25 g T-12/kg medium) rate of fungal propagules, suggesting potential phytotoxicity at higher concentrations. The objectives of this study were to investigate higher rates of T-12 medium amendment for phytotoxicity, and to examine an alternative method of delivering the fungus to the propagative medium in order to obtain a more uniform response from cuttings. Isolate T-12 was added to the propagative medium as either a powdered peat-bran amendment (0, 5, or 50 g T-12/kg medium) or as alginate prills (80 or 800 g T-12/kg medium). There were no differences among treatments on day seven, but by day 21, shoot fresh weight and heights were significantly greater for plants treated with prills at 800 g T-12/kg medium. Both prill treatments resulted in greater shoot height on day 14 and 21 than all other treatments, which were similar to controls. Amendment with T-12 powder at 50 g/kg increased root length, but 80 g/kg medium added as prills decreased root dry weight compared to the control. The highest rate of T-12 (800 g prills/kg medium) had no effect on root growth. This suggests that moderate, rather than high rates of T-12 are more effective in promoting rooting of unrooted chrysanthemum, and that there is a potential for phytotoxic effects on root growth with higher rates.  相似文献   
3.
Flowering dogwood (Cornus florida L.) populations recently have experienced severe declines caused by dogwood anthracnose. Mortality has ranged from 48 to 98%, raising the concern that genetic diversity has been reduced significantly. Microsatellite data were used to evaluate the level and distribution of genetic variation throughout much of the native range of the tree. Genetic variation in areas affected by anthracnose was as high as or higher than areas without die-offs. We found evidence of four widespread, spatially contiguous genetic clusters. However, there was little relationship between geographic distance and genetic difference. These observations suggest that high dispersal rates and large effective population sizes have so far prevented rapid loss of genetic diversity. The effects of anthracnose on demography and community structure are likely to be far more consequential than short-term genetic effects.  相似文献   
4.
5.
Dual biological control, of both insect pests and plant pathogens, has been reported for the fungal entomopathogens, Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota: Hypocreales) and Lecanicillium spp. (Ascomycota: Hypocreales). However, the primary mechanisms of plant disease suppression are different for these fungi. Beauveria spp. produce an array of bioactive metabolites, and have been reported to limit growth of fungal plant pathogens in vitro. In plant assays, B. bassiana has been reported to reduce diseases caused by soilborne plant pathogens, such as Pythium, Rhizoctonia, and Fusarium. Evidence has accumulated that B. bassiana can endophytically colonize a wide array of plant species, both monocots and dicots. B. bassiana also induced systemic resistance when endophytically colonized cotton seedlings were challenged with a bacterial plant pathogen on foliage. Species of Lecanicillium are known to reduce disease caused by powdery mildew as well as various rust fungi. Endophytic colonization has been reported for Lecanicillium spp., and it has been suggested that induced systemic resistance may be active against powdery mildew. However, mycoparasitism is the primary mechanism employed by Lecanicillium spp. against plant pathogens. Comparisons of Beauveria and Lecanicillium are made with Trichoderma, a fungus used for biological control of plant pathogens and insects. For T. harzianum Rifai (Ascomycota: Hypocreales), it has been shown that some fungal traits that are important for insect pathogenicity are also involved in biocontrol of phytopathogens.  相似文献   
6.

Background

Different patterns of drug resistance are observed in treated and therapy naïve HIV-1 infected populations. Especially the NRTI-related M184I/V variants, which are among the most frequently encountered mutations in treated patients, are underrepresented in the antiretroviral naïve population. M184I/V mutations are known to have a profound effect on viral replication and tend to revert over time in the new host. However it is debated whether a diminished transmission efficacy of HIV variants with a reduced replication capacity can also contribute to the observed discrepancy in genotypic patterns.As dendritic cells (DCs) play a pivotal role in HIV-1 transmission, we used a model containing primary human Langerhans cells (LCs) and DCs to compare the transmission efficacy M184 variants (HIV-M184V/I/T) to HIV wild type (HIV-WT). As control, we used HIV harboring the NNRTI mutation K103N (HIV-K103N) which has a minor effect on replication and is found at a similar prevalence in treated and untreated individuals.

Results

In comparison to HIV-WT, the HIV-M184 variants were less efficiently transmitted to CCR5+ Jurkat T cells by both LCs and DCs. The transmission rate of HIV-K103N was slightly reduced to HIV-WT in LCs and even higher than HIV-WT in DCs. Replication experiments in CCR5+ Jurkat T cells revealed no apparent differences in replication capacity between the mutant viruses and HIV-WT. However, viral replication in LCs and DCs was in concordance with the transmission results; replication by the HIV-M184 variants was lower than replication by HIV-WT, and the level of replication of HIV-K103N was intermediate for LCs and higher than HIV-WT for DCs.

Conclusions

Our data demonstrate that drug resistant M184-variants display a reduced replication capacity in LCs and DCs which directly impairs their transmission efficacy. As such, diminished transmission efficacy may contribute to the lower prevalence of drug resistant variants in therapy naive individuals.
  相似文献   
7.
This report reviews the development of a rapidin situ approach to study the physiological responses of bacteria within biofilms to disinfectants. One method utilized direct viable counts (DVC) to assess the disinfection efficacy when thin biofilms were exposed to chlorine or monochloramine. Results obtained using the DVC method were one log higher than plate count (PC) estimates of the surviving population after disinfection. Other methods incorporated the use of fluorogenic stains, a cryotomy technique to yield thin (5-m) sections of biofilm communities and examination by fluorescence microscopy. The fluorogenic stains used in this approach included 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), which indicates cellular electron transport activity and Rhodamine 123, which responds specifically to proton motive force. The use of these stains allowed the microscopic discrimination of physiologically active bacteria as well as heterogeneities of active cells within thicker biofilms. The results of experiments using these techniques with pure culture and binary population biofilms on stainless steel coupons indicated biocidal activity of chlorine-based disinfectants occurred initially at the bulk-fluid interface of the communities and progressed toward the substratum. This approach provided a unique opportunity to describe the spatial response of bacteria within biofilms to antimicrobial agents and address mechanisms explaining their comparative resistance to disinfection in a way that has not been possible using traditional approaches. Results obtained using this alternative approach were also consistently higher than PC data following disinfection. These observations suggest that traditional methods involving biofilm removal and bacterial enumeration by colony formation overestimate biocide efficacy. Hence the alternative approach described here more accurately indicates the ability of bacteria surviving disinfection to recover and grow as well as demonstrate spatial heterogeneities in cellular physiological activities within biofilms.  相似文献   
8.
An emerging paradigm in sustainable biotechnique is the use of mutualists to enhance plant growth and secondary metabolism. Our objective was to determine impact of two groups of fungal mutualists on growth and phytochemistry of Echinacea purpurea. Growth, development, and phytochemical concentration were measured in greenhouse-grown 12-week-old plants colonized by arbuscular mycorrhizal fungi (AMF) (Rhizophagus intraradices and Gigaspora margarita) or the endophytic entomopathogen, Beauveria bassiana. In one experiment, all measured growth parameters were increased in mycorrhizal plants. Biomass of AMF-colonized plants was over 13-fold greater than non-mycorrhizal controls receiving the same levels of phosphorous, and over 4-fold greater than non-mycorrhizal controls given additional phosphorous. Endophytic colonization by B. bassiana had minor effects on growth. Colonization by AMF and B. bassiana alone or in combination altered concentrations of phytochemicals (pigments, polyphenolics, alkylamides, and terpenes). Mycorrhizal plants produced up to 4.6-fold higher concentration of polyphenolics. Specific alkylamides increased 1.7 fold in plants colonized only with B. bassiana and up to a 2.4-fold increase in plants colonized by both mutualists. Changes in other phytochemical classes were related to differences in plant size induced by AMF. Phytochemical content (concentration × biomass) was increased up to 30-fold in mycorrhizal plants. Phytochemical relationships to plant biomass were confirmed in a second experiment in which non-mycorrhizal plants were fertilized to produce biomass equivalent to that of mycorrhizal plants. Based on this study, mycorrhizal colonization of E. purpurea enhances phytochemical content; this has major implications for the natural product industries and growers of E. purpurea.  相似文献   
9.

Background

Riboflavin (RF) or vitamin B2 is known to have neuroprotective effects. In the present study, we report the attenuation of the neuroprotective effects of RF under UV-B irradiation. Preconditioning of UV-B irradiated riboflavin (UV-B-RF) showed attenuated neuroprotective effects compared to that of RF in SH-SY5Y neuroblostoma cell line and primary cortical neurons in vitro and a rat model of cerebral ischemia in vivo.

Results

Results indicated that RF pretreatment significantly inhibited cell death and reduced LDH secretion compared to that of the UV-B-RF pretreatment in primary cortical neuron cultures subjected to oxygen glucose deprivation in vitro and cortical brain tissue subjected to ischemic injury in vivo. Further mechanistic studies using cortical neuron cultures revealed that RF treatment induced increased miR-203 expression which in turn inhibited c-Jun expression and increased neuronal cell survival. Functional assays clearly demonstrated that the UV-B-RF preconditioning failed to sustain the increased expression of miR-203 and the decreased levels of c-Jun, mediating the neuroprotective effects of RF. UV-B irradiation attenuated the neuroprotective effects of RF through modulation of the miR-203/c-Jun signaling pathway.

Conclusion

Thus, the ability of UV-B to serve as a modulator of this neuroprotective signaling pathway warrants further studies into its role as a regulator of other cytoprotective/neuroprotective signaling pathways.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号