首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   3篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1965年   1篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
1.
The alpha- and beta-phosphorothioate analogs of UDP-Gal and UDP-Glc, in which a sulfur is exchanged for a non-bridging oxygen at one of the phosphate groups, have been synthesized and tested for their resistance to enzymatic degradation and for their usefulness in glycosyltransferase reactions. The alpha analogs were found to be no more resistant to hydrolysis than the native nucleotide sugars, but as previously reported (R. B. Marchase et al. (1987) Biochim. Biophys. Acta 916: 157) the beta S analogs were approximately 10 times more resistant. The beta S analog and native UDP-Glc were found to have comparable Km's when used in assays for glucosylphosphoryl dolichol synthase with rat liver and hen oviduct microsomes, although the apparent Vmax of the reaction was about twofold higher for the analog, presumably due to its resistance to degradation. Partially purified 4 beta-galactosyltransferase exhibited a Vmax with (beta S)UDP-Gal that was only slightly lower than that with UDP-Gal and a Km that was slightly increased. The effectiveness of the analog was especially apparent in assays for 4 beta-galactosyltransferase on intact sperm and in rat liver homogenates, in which hydrolysis of the normal substrate was very rapid and net incorporation was at least 4 times greater with the beta S analog in each system.  相似文献   
2.
The targeting of various Rab proteins to different subcellular compartments appears to be determined by variable amino acid sequences located upstream from geranylgeranylated cysteine residues in the C-terminal tail. All nascent Rab proteins are prenylated by geranylgeranyltransferase II, which recognizes the Rab substrate only when it is bound to Rab escort protein (REP). After prenylation, REP remains associated with the modified Rab until it is delivered to the appropriate subcellular membrane. It remains unclear whether docking of the Rab with the correct membrane is solely a function of features contained within the prenylated Rab itself (with REP serving as a "passive" carrier) or whether REP actively participates in the targeting process. To address this issue, we took advantage of a mutation in the alpha2 helix of Rab1B (i.e. Y78D) that abolishes REP and GDI interaction without disrupting nucleotide binding or hydrolysis. These studies demonstrate that replacing the C-terminal GGCC residues of Rab1B(Y78D) with a CLLL motif permits this protein to be prenylated by geranylgeranyltransferase I but not II both in cell-free enzyme assays and in transfected cells. Subcellular fractionation and immunofluorescence studies reveal that the prenylated Rab1B(Y78D)CLLL, which remains deficient in REP and GDI association is, nonetheless, delivered to the Golgi and endoplasmic reticulum (ER) membranes. When the dominant-negative S22N mutation was inserted into Rab1B-CLLL, the resulting monoprenylated construct suppressed ER --> Golgi protein transport. However, when the Y78D mutation was added to the latter construct, its inhibitory effect on protein trafficking was lost despite the fact that it was localized to the ER/Golgi membrane. Therefore, protein interactions mediated by the alpha2 helical domain of Rab1B(S22N) appear to be essential for its functional interaction with components of the ER --> Golgi transport machinery.  相似文献   
3.
Posttranslational modification of Rab proteins by geranylgeranyltransferase type II requires that they first bind to Rab escort protein (REP). Following prenylation, REP is postulated to accompany the modified GTPase to its specific target membrane. REP binds preferentially to Rab proteins that are in the GDP state, but the specific structural domains involved in this interaction have not been defined. In p21 Ras, the α2 helix of the Switch 2 domain undergoes a major conformational change upon GTP hydrolysis. Therefore, we hypothesized that the corresponding region in Rab1B might play a key role in the interaction with REP. Introduction of amino acid substitutions (I73N, Y78D, and A81D) into the putative α2 helix of Myc-tagged Rab1B prevented prenylation of the recombinant protein in cell-free assays, whereas mutations in the α3 and α4 helices did not. Additionally, upon transient expression in transfected HEK-293 cells, the Myc-Rab1B α2 helix mutants were not efficiently prenylated as determined by incorporation of [3H]mevalonate. Metabolic labeling studies using [32P]orthophosphate indicated that the poor prenylation of the Rab1B α2 helix mutants was not directly correlated with major disruptions in guanine nucleotide binding or intrinsic GTPase activity. Finally, gel filtration analysis of cytosolic fractions from 293 cells that were coexpressing T7 epitope-tagged REP with various Myc-Rab1B constructs revealed that mutations in the α2 helix of Rab1B prevented the association of nascent (i.e., nonprenylated) Rab1B with REP. These data indicate that the Switch 2 domain of Rab1B is a key structural determinant for REP interaction and that nucleotide-dependent conformational changes in this region are largely responsible for the selective interaction of REP with the GDP-bound form of the Rab substrate.  相似文献   
4.

Background

Vitamin D is associated with lung function in cross-sectional studies, and vitamin D inadequacy is hypothesized to play a role in the pathogenesis of chronic obstructive pulmonary disease. Further data are needed to clarify the relation between vitamin D status, genetic variation in vitamin D metabolic genes, and cross-sectional and longitudinal changes in lung function in healthy adults.

Methods

We estimated the association between serum 25-hydroxyvitamin D [25(OH)D] and cross-sectional forced expiratory volume in the first second (FEV1) in Framingham Heart Study (FHS) Offspring and Third Generation participants and the association between serum 25(OH)D and longitudinal change in FEV1 in Third Generation participants using linear mixed-effects models. Using a gene-based approach, we investigated the association between 241 SNPs in 6 select vitamin D metabolic genes in relation to longitudinal change in FEV1 in Offspring participants and pursued replication of these findings in a meta-analyzed set of 4 independent cohorts.

Results

We found a positive cross-sectional association between 25(OH)D and FEV1 in FHS Offspring and Third Generation participants (P = 0.004). There was little or no association between 25(OH)D and longitudinal change in FEV1 in Third Generation participants (P = 0.97). In Offspring participants, the CYP2R1 gene, hypothesized to influence usual serum 25(OH)D status, was associated with longitudinal change in FEV1 (gene-based P < 0.05). The most significantly associated SNP from CYP2R1 had a consistent direction of association with FEV1 in the meta-analyzed set of replication cohorts, but the association did not reach statistical significance thresholds (P = 0.09).

Conclusions

Serum 25(OH)D status was associated with cross-sectional FEV1, but not longitudinal change in FEV1. The inconsistent associations may be driven by differences in the groups studied. CYP2R1 demonstrated a gene-based association with longitudinal change in FEV1 and is a promising candidate gene for further studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0238-y) contains supplementary material, which is available to authorized users.  相似文献   
5.
The biosynthesis of phosphatidylserine (PS) and its conversion to phosphatidylcholine (PC) are regulated coordinately by inositol and choline in Saccharomyces cerevisiae (G. M. Carman and S. A. Henry, 1989, Annu. Rev. Biochem. 58, 635-669). In this study, PS decarboxylase activity is shown to be partially repressed when inositol is added to the medium of cells in the log phase of growth, and the extent of repression is augmented by the inclusion of choline, but not ethanolamine. The kinetics of repression and derepression of PS decarboxylase, PS synthase, and phospholipid N-methyltransferase (PNMT) activities, as regulatory responses to the availability of exogenous inositol and choline, have been characterized. When inositol was added to the medium of cell cultures growing exponentially, the three biosynthetic enzyme activities reached an intermediate level of repression (50-85% of control) within 60 min. After the addition of the combination of inositol and choline, PS decarboxylase, PS synthase, and PNMT activities decreased to the intermediate levels of repression in 60 min and were subsequently reduced to 15-40% of control values during a later stage of regulation (2-3 h). In a derepression study, the three enzyme activities remained relatively stable for approximately 60 min following the removal of choline and/or inositol from the growth medium, but the specific activities of PS decarboxylase, PS synthase, and PNMT increased to maximally derepressed levels within 2-3 h. The induction of the three biosynthetic activities was blocked by cycloheximide, but not by chloramphenicol. In summary, the level of PS decarboxylase activity in S. cerevisiae is partially and reversibly suppressed by inositol and further diminished by the combination of inositol and choline. The biphasic kinetics of repression by inositol and choline suggest that the effect of choline is dependent on earlier events mediated by inositol and possibly involves a separate regulatory factor(s).  相似文献   
6.
The reaction rate and selectivity of the enzymatic kinetic resolution of ibuprofen and 1-phenylethanol with supercritical CO2 as solvent were studied in a batch reactor from 40 °C to 160 °C. The commercial enzyme, Novozym 435, remained partly active for at least 14 h up to 140 °C at 15 MPa. The maximum reaction rate for the esterification of 1-phenylethanol and ibuprofen was at about 90 °C. The enantiomeric excess for 1-phenylethanol exceeds 99% and was temperature independent. Selectivity for ibuprofen esterification reached a lower enantiomeric excess of 61% caused by equilibrium adjustment. The results show that with supercritical CO2 as reaction medium enzymes remain active above 100 °C.  相似文献   
7.
Expression of activated Ras in glioblastoma cells induces accumulation of large phase-lucent cytoplasmic vacuoles, followed by cell death. This was previously described as autophagic cell death. However, unlike autophagosomes, the Ras-induced vacuoles are not bounded by a double membrane and do not sequester organelles or cytoplasm. Moreover, they are not acidic and do not contain the autophagosomal membrane protein LC3-II. Here we show that the vacuoles are enlarged macropinosomes. They rapidly incorporate extracellular fluid-phase tracers but do not sequester transferrin or the endosomal protein EEA1. Ultimately, the cells expressing activated Ras detach from the substratum and rupture, coincident with the displacement of cytoplasm with huge macropinosome-derived vacuoles. These changes are accompanied by caspase activation, but the broad-spectrum caspase inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethylketone does not prevent cell death. Moreover, the majority of degenerating cells do not exhibit chromatin condensation typical of apoptosis. These observations provide evidence for a necrosis-like form of cell death initiated by dysregulation of macropinocytosis, which we have dubbed "methuosis." An activated form of the Rac1 GTPase induces a similar form of cell death, suggesting that Ras acts through Rac-dependent signaling pathways to hyperstimulate macropinocytosis in glioblastoma. Further study of these signaling pathways may lead to the identification of other chemical and physiologic triggers for this unusual form of cell death.  相似文献   
8.
Previous studies have shown that bacteria maintained in a low-nutrient "natural" environment such as swimming pool water are much more resistant to disinfection by various chemical agents than strains maintained on rich media. In the present study a comparison was made of the chlorine (Cl2) susceptibility of hot-water tank isolates of Legionella pneumophila maintained in tap water and strains passaged on either nonselective buffered charcoal-yeast extract or selective differential glycine-vancomycin-polymyxin agar medium. Our earlier work has shown that environmental and clinical isolates of L. pneumophila maintained on agar medium are much more resistant to Cl2 than coliforms are. Under the present experimental conditions (21 degrees C, pH 7.6 to 8.0, and 0.25 mg of free residual Cl2 per liter, we found the tap water-maintained L. pneumophila strains to be even more resistant than the agar-passaged isolates. Under these conditions, 99% kill of tap water-maintained strains of L. pneumophila was usually achieved within 60 to 90 min compared with 10 min for agar-passaged strains. Samples from plumbing fixtures in a hospital yielded legionellae which were "super"-chlorine resistant when assayed under natural conditions. After one agar passage their resistance dropped to levels of comparable strains which had not been previously exposed to additional chlorination. These studies more closely approximate natural conditions than our previous work and show that tap water-maintained L. pneumophila is even more resistant to Cl2 than its already resistant agar medium-passaged counterpart.  相似文献   
9.
The utility of a nuclear protein-coding gene for reconstructing phylogenetic relationships within the family Culicidae was explored. Relationships among 13 species representing three subfamilies and nine genera of Culicidae were analyzed using a 762-bp fragment of coding sequence from the eye color gene, white. Outgroups for the study were two species from the sister group Chaoboridae. Sequences were determined from clone PCR products amplified from genomic DNA, and aligned following conceptual intron splicing and amino acid translation. Third codon positions were characterized by high levels of divergence and biased nucleotide composition, the intensity and direction of which varied among taxa. Equal weighting of all characters resulted in parsimony and neighboring-joining trees at odds with the generally accepted phylogenetic hypothesis based on morphology and rDNA sequences. The application of differential weighting schemes recovered the traditional hypothesis, in which the subfamily Anophelinae formed the basal clade. The subfamily Toxorhynchitinae occupied an intermediate position, and was a sister group to the subfamily Culicinae. Within Culicinae, the genera Sabethes and Tripteroides formed an ancestral clade, while the Culex-Deinocerites and Aedes- Haemagogus clades occupied increasingly derived positions in the molecular phylogeny. An intron present in the Culicinae- Toxorhynchitinae lineage and one outgroup taxon was absent in the basal Anophelinae lineage and the second outgroup taxon, suggesting that intron insertions or deletions may not always be reliable systematic characters.   相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号