首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   5篇
  2022年   1篇
  2021年   2篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   9篇
  2011年   6篇
  2010年   6篇
  2009年   4篇
  2008年   6篇
  2007年   2篇
  2006年   7篇
  2005年   4篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1977年   1篇
  1972年   1篇
  1971年   6篇
排序方式: 共有115条查询结果,搜索用时 31 毫秒
1.
Iodination of cytotoxin P4, isolated from the venom of Naja nigricollis nigricollis, develops gradually and depends on the molar ratio between the free iodine and the cytotoxin reaching a maximum of two equivalents at a molar ratio of 250 or higher. The cytotoxic activity was also gradually decreased and was totally abolished when one equivalent of iodination was achieved. However, antigenic properties of the cytotoxin were preserved in the iodinated form. When the iodination of the cytotoxin was carried out with a carrier free radiolabeled iodide, the molar ratio was 0.05 resulting in labelling of only 2% of the cytotoxin molecules, which explains the cytotoxicity of the radiolabeled mixture.  相似文献   
2.
M. Tom  M. Goren  M. Ovadia 《Hydrobiologia》1988,169(3):339-352
The population ofP. longirostris along the Mediterranean coast of Israel spends the benthic phase of its life cycle (from body size over 15 mm) on muddy bottom deeper than 45 m. New age groups are recruited within the depth zone of 45–300 m and migrate in both inshore and offshore directions. Inshore migration is limited by unsuitable sandy ground. The limiting line for offshore migration was not found.An age group could be detected during one year within a body size range of TL = 40 mm to TL = 84.5 mm for males and to TL = 102.5 mm for females. Reproductive activity in shallow water, down to a depth of 73 m, takes place during the whole year, while in depths of 150–300 m there is an arrest of reproductive activity from June to August.  相似文献   
3.
After 2 days of water deprivation in a warm climate, Papio hamadryas baboons lost 10% of their body mass, 12.5% of their total body water (3H2O) space, but only 4% of their plasma volume [Evans blue (EB) space]. Hematocrit and hemoglobin concentration as well as blood viscosity and blood pressure were not affected by thermal dehydration. Plasma colloid osmotic pressure (COP) in the dehydrated animals was, however, 8 Torr higher than in fully hydrated baboons. Total mass and concentration of plasma albumin, and protein concentration increased after dehydration. Both half times (T 1/2) of EB and T 1/2 of 131I-serum albumin were twice as high as in the dehydrated animal than in the fully hydrated ones. Incorporation rate of L-[3H]leucine in the plasma proteins was similarly higher in the dehydrated animals. The capacity of the P. hamadryas baboon to maintain its plasma volume at the expense of losses from other body fluid compartments is related to an increase in the blood COP that is brought about by a more efficient retention of albumin and an increase in its rate of synthesis.  相似文献   
4.
Pepper plants containing the dominant A gene accumulate anthocyanin pigments in the foliage, flower and immature fruit. We previously mapped A to pepper chromosome 10 in the F2 progeny of a cross between 5226 (purple-fruited) and PI 159234 (green-fruited) to a region that corresponds, in tomato, to the location of Petunia anthocyanin 2 (An2), a regulator of anthocyanin biosynthesis. This suggested that A encodes a homologue of Petunia An2. Using the sequences of An2 and a corresponding tomato expressed sequence tag, we isolated a pepper cDNA orthologous to An2 that cosegregated with A. We subsequently determined the expression of A by Northern analysis, using RNA extracted from fruits, flowers and leaves of 5226 and PI 159234. In 5226, expression was detected in all stages of fruit development and in both flower and leaf. In contrast, A was not expressed in the sampled tissues in PI 159234. Genomic sequence comparison of A between green- and purple-fruited genotypes revealed no differences in the coding region, indicating that the lack of expression of A in the green genotypes can be attributed to variation in the promoter region. By analyzing the expression of the structural genes in the anthocyanin biosynthetic pathway in 5226 and PI 159234, it was determined that, similar to Petunia, the early genes in the pathway are regulated independently of A, while expression of the late genes is A-dependent.Communicated by R. Hagemann  相似文献   
5.
Gal M  Katz T  Ovadia A  Yagil G 《Nucleic acids research》2003,31(13):3682-3685
A program to map the locations and frequencies of DNA tracts composed of only two bases ('Binary DNA') is described. The program, TRACTS (URL http://bioportal.weizmann.ac.il/tracts/tracts.html and/or http://bip.weizmann.ac.il/miwbin/servers/tracts) is of interest because long tracts composed of only two bases are highly over-represented in most genomes. In eukaryotes, oligopurine.oligopyrimidine tracts ('R.Y tracts') are found in the highest excess. In prokaryotes, W tracts predominate (A,T 'rich'). A pre-program, ANEX, parses database annotation files of GenBank and EMBL, to produce a convenient one-line list of every gene (exon, intron) in a genome. The main unit lists and analyzes tracts of the three possible binary pairs (R.Y, K.M and S;W). As an example, the results of R.Y tract mapping of mammalian gene p53 is described.  相似文献   
6.
A 27-year-old female rhesus macaque (Macaca mulatta) developed anisocoria. The left pupil was dilated and unresponsive to light. The macaque was euthanized because of unrelated reasons and the body was submitted for necropsy. On gross examination, a berry aneurysm of the right middle cerebral artery causing marked compression of the right optic tract was found. Arteriosclerotic changes were observed microscopically in the right middle cerebral and in the internal carotid arteries. The left iris was markedly degenerated, with atrophy of the constrictor muscle. Compression of the right optic tract may cause homonimus hemianopsia. A dilated and unresponsive left pupil indicated a lesion in the ipsilateral parasympathetic efferent pathway. In the absence of appreciable lesions of the left oculomotor nerve, the most likely cause of mydriasis was the iridic lesion. Intracranial aneurysms are common in humans (2 to 5%), but not in other species. Only about 10% of unruptured aneurysms are associated with neurologic deficits related to mechanical compression, such as visual deficits or anisocoria. Meticulous investigation of the ocular vascular and neural pathways led us to conclude that the anisocoria was unrelated to the aneurysm. To our knowledge, this report represents the first documented case of a naturally occurring intracranial aneurysm in nonhuman primates.  相似文献   
7.
Acute partial compression of the fetal ductus arteriosus (DA) results in an initial increase in pulmonary blood flow (PBF) that is followed by acute vasoconstriction. The objective of the present study was to determine the role of nitric oxide (NO)-endothelin-1 (ET-1) interactions in the acute changes in pulmonary vascular tone after in utero partial constriction of the DA. Twelve late-gestation fetal lambs (132-140 days) were instrumented to measure vascular pressures and left PBF. After a 24-h recovery period, acute constriction of the DA was performed by partially inflating a vascular occluder, and the hemodynamic variables were observed for 4 h. In control lambs (n = 7), acute ductal constriction initially increased PBF by 627% (P < 0.05). However, this was followed by active vasoconstriction, such that PBF was restored to preconstriction values by 4 h. This was associated with a 43% decrease in total NO synthase (NOS) activity (P < 0.05) and a 106% increase in plasma ET-1 levels (P < 0.05). Western blot analysis demonstrated no changes in lung tissue endothelial NOS, preproET-1, endothelin-converting enzyme-1, or ET(B) receptor protein levels. The infusion of PD-156707 (an ET(A) receptor antagonist, n = 5) completely blocked the vasoconstriction and preserved NOS activity. These data suggest that the fetal pulmonary vasoconstriction after acute constriction of the DA is mediated by NO-ET-1 interactions. These include an increase in ET(A) receptor-mediated vasoconstriction and an ET(A) receptor-mediated decrease in NOS activity. The mechanisms of these NO-ET-1 interactions, and their role in mediating acute changes in PBF, warrant further studies.  相似文献   
8.
9.
Plants are known to be highly responsive to environmental heterogeneity and normally allocate more biomass to organs that grow in richer patches. However, recent evidence demonstrates that plants can discriminately allocate more resources to roots that develop in patches with increasing nutrient levels, even when their other roots develop in richer patches. Responsiveness to the direction and steepness of spatial and temporal trajectories of environmental variables might enable plants to increase their performance by improving their readiness to anticipated resource availabilities in their immediate proximity. Exploring the ecological implications and mechanisms of trajectory-sensitivity in plants is expected to shed new light on the ways plants learn their environment and anticipate its future challenges and opportunities.Key words: Gradient perception, phenotypic plasticity, anticipatory responses, plant behavior, plant learningNatural environments present organisms with myriad challenges of surviving and reproducing under changing conditions.1 Depending on its extent, predictability and costs, environmental heterogeneity may select for various combinations of genetic differentiation and phenotypic plasticity.26 However, phenotypic plasticity is both limited and costly.7 One of the main limitations of phenotypic plasticity is the lag between the perception of the environment and the time the products of the plastic responses are fully operational.7 For instance, the developmental time of leaves may significantly limit the adaptive value of their plastic modification due to mismatches between the radiation levels and temperatures prevailing during their development and when mature and fully functional.8,9 Accordingly, selection is expected to promote responsiveness to cues that bear information regarding the probable future environment.9,10Indeed, anticipatory responses are highly prevalent, if not universal, amongst living organisms. Whether through intricate cerebral processes, such as in vertebrates, nervous coordination, as in Echinoderms,11 or by relatively rudimentary non-neural processes, such as in plants12 and bacteria,13 accumulating examples suggest that virtually all known life forms are able to not only sense and plastically respond to their immediate environment but also anticipate probable future conditions via environmental correlations.10Perhaps the best known example of plants'' ability to anticipate future conditions is their responsiveness to spectral red/far-red cues, which is commonly tightly correlated with future probability of light competition.14 Among others, plants have been shown to respond to cues related to anticipated herbivory15,16 and nitrogen availability.17 Imminent stress is commonly anticipated by the perception of a prevailing stress. For example, adaptation to anticipated severe stress was demonstrated to be inducted by early priming by sub-acute drought,18 root competition19 and salinity.20Future conditions can also be anticipated by gradient perception: because resource and stress levels are often changing along predictable spatial and temporal trajectories, spatio-temporal dynamics of environmental variables might convey information regarding anticipated growth conditions (Fig. 1). For example, the order of changes in day length, rather than day length itself, are known to assist plants in differentiating fall from spring and thus avoid blooming in the wrong season.21 In addition, responsiveness to environmental gradients as such, i.e., sensitivity to the direction and steepness of environmental trajectories, independently from the stationary levels of the same factors, has been demonstrated in higher organisms, such as the perception of acceleration in contrast to velocity;22 and the dynamics of skin temperature in contrast to stationary skin temperature;23 where the adaptive value of the second-order derivatives of environmental factors is paramount. Similar perception capabilities have also been demonstrated in rudimentary life forms such as bacteria (reviewed in refs. 13 and 24) and plants.25,26 Specifically, perception of environmental trajectories might assist organisms to both anticipate future conditions and better utilize the more promising patches in their immediate environment.27,28Open in a separate windowFigure 1Trajectory sensitivity in plants. The hypothetical curves depict examples of spatio-temporal trajectories of resource availability, which might be utilized by plants to increase foraging efficiency in newly-encountered patches. When young or early-in-the-season (segment 1–2), plants are expected to allocate more resources to roots that experience the most promising (steepest increases or shallowest decreases) resource availabilities (e.g., allocating more resources to organs in INC-1 than INC-2). In addition, plants are predicted to avoid allocation to roots experiencing decreasing trajectories (DEC, segment 1–2); although temporarily more abundant with resources, such DEC patches are expected to become poorer than alternative patches in the longer run (segment 2–3).29 However, responsiveness to environmental trajectories is only predicted where the expected period of resource uptake is relatively long, e.g., when plants are still active in segment 2–3, a stipulation which might not be fulfilled in e.g., short-living annuals with life span shorter than segment 1–2.In a recent study, Pisum plants have been demonstrated to be sensitive to temporal changes in nutrient availabilities. Specifically, plants allocated greater biomass to roots growing under dynamically-improving nutrient levels than to roots that grew under continuously higher, yet stationary or deteriorating, nutrient availabilities.29 Allocation to roots in poorer patches might seem maladaptive if only stationary nutrient levels are accounted for, and indeed-almost invariably, plants are known to allocate more resources to organs that experience higher (non-toxic) resource levels (reviewed in ref. 33). Accordingly, the new findings suggest that rather than merely responding to the prevailing nutrient availabilities, root growth and allocation are also responsive to trajectories of nutrient availabilities (Fig. 1).10Although Shemesh et al.29 demonstrated trajectory-sensitivity of individual roots to temporal gradient of nutrient availabilities, it is likely that this sensitivity helps plants sense spatial gradients, whereby root tips perceive changes in growth conditions as they move through space.34 Interestingly, because the trajectory-sensitivity was observed when whole roots were subjected to changing nutrient levels, it is likely that trajectory sensitivity in roots is based on the integration of sensory inputs perceived by yet-to-be-determined parts of the root over time, i.e., temporal sensitivity/memory (e.g. reviewed in ref. 35), rather than on the integration of sensory inputs at different locations on the same individual roots (i.e., spatial sensitivity).Besides the direction of change, it is hypothesized that plants are also sensitive to the steepness of environmental trajectories (Fig. 1). This might be especially crucial in short-living annuals, which are expected to only be responsive to trajectories steep enough to be indicative of changes in growth conditions before the expected termination of the growth season (Fig. 1).Studying responsiveness to environmental variability is pivotal for understanding the ecology and evolution of any living organism. However, until recently most attention has been given to the study of responses to stationary spatial and temporal heterogeneities in growth conditions. Exploring the ecological implications and mechanisms of trajectory sensitivity in plants is expected to shed new light on the ways plants learn their immediate environment and anticipate its future challenges and opportunities.  相似文献   
10.
Anthocyanins are the largest group of plant pigments responsible for colors ranging from red to violet and blue. The biosynthesis of anthocyanins, as part of the larger phenylpropanoid pathway, has been characterized in great detail. In contrast to the detailed molecular knowledge available on anthocyanin synthesis, very little is known about the stability and catabolism of anthocyanins in plants. In this study we present a preliminary characterization of active in planta degradation of anthocyanins, requiring novel mRNA and protein synthesis, in Brunfelsia calycina flowers. Brunfelsia is a unique system for this study, since the decrease in pigment concentration in its flowers (from dark purple to white) is extreme and rapid, and occurs at a specific and well-defined stage of flower development. Treatment of detached flowers with protein and mRNA synthesis inhibitors, at specific stages of flower development, prevented degradation. In addition, treatment of detached flowers with cytokinins delayed senescence without changing the rate of anthocyanin degradation, suggesting that degradation of anthocyanins is not part of the general senescence process of the flowers but rather a distinctive and specific pathway. Based on studies on anthocyanin degradation in wine and juices, peroxidases are reasonable candidates for the in vivo degradation. A significant increase in peroxidase activity was shown to correlate in time with the rate of anthocyanin degradation. An additional indication that oxidative enzymes are involved in the process is the fact that treatment of flowers with reducing agents, such as DTT and glutathione, caused inhibition of degradation. This study represents the first step in the elucidation of the molecular mechanism behind in vivo anthocyanin degradation in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号