首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2016年   1篇
  2014年   1篇
  2007年   1篇
  1998年   1篇
  1997年   1篇
  1995年   3篇
  1988年   1篇
排序方式: 共有9条查询结果,搜索用时 0 毫秒
1
1.
The experiment was conducted to identify the response of three cultivars of okra [Abelmoschus esculentus (L.) Moench] to exogenous hormones [gibberellic acid-(GA3) and prohexadione-Ca] applied as foliar spray. Stem and leaf dry masses and stem length were significantly enhanced by the application of exogenous GA3, but prohexadione-Ca inhibited growth. Control and prohexadione-Ca treated okra plants took more time to bloom than did GA3 treated plants. In the fruits of all the cultivars a decrease in fructose content was observed, while protein content remained almost unchanged after the application of the two growth regulators. The small changes in chlorophyll a fluorescence characteristics observed under prohexadione-Ca suggested a weakening of the photochemical processes near the photosystem 2 reaction centre. The lowering of ratio between maximum time to reach maximum fluorescence, Fm (Tmax) and Area (sum of Fm-Ft for t = 0 to t = Tmax) caused by GA3 was probably due to the increase of Area rather than to changes in Tmax.  相似文献   
2.
The phytotoxic aluminum species (Al3+) is considered as the primary factor limiting crop productivity in over 40 % of world’s arable land that is acidic. We evaluated the responses of two wheat cultivars (Triticum aestivum L.) with differential Al resistance, cv. Yecora E (Al-resistant) and cv. Dio (Al-sensitive), exposed to 0, 37, 74 and 148 μM Al for 14 days in hydroponic culture at pH 4.5. With increasing Al concentration, leaf Ca2+ and Mg2+ content decreased, as well as the effective quantum yield of photosystem II (PSII) photochemistry (Φ PSII ), while a gradual increase in leaf membrane lipid peroxidation, Al accumulation, photoinhibition (estimated as F v /F m ), and PSII excitation pressure (1 ? q p ) occurred. However, the Al-resistant cultivar with lower Al accumulation, retained larger concentrations of Ca2+ and Mg2+ in the leaves and kept a larger fraction of the PSII reaction centres (RCs) in an open configuration, i.e. a higher ratio of oxidized to reduced quinone A (QA), than plants of the Al-sensitive cultivar. Four times higher Al concentration in the nutrient solution was required for Al-resistant plants (148 μM Al) than for Al-sensitive (37 μM Al), in order to establish the same closed RCs. Yet, the decline in photosynthetic efficiency in the cultivar Dio was not only due to closure of PSII RCs but also to a decrease in the quantum yield of the open RCs. We suggest that Al3+ toxicity may be mediated by nutrient deficiency and oxidative stress, and that Al-resistance of the wheat cultivar Yecora E, may be due at least partially, from the decreased Al accumulation that resulted to decreased reactive oxygen species (ROS) formation. However, under equal internal Al accumulation (exposure Al concentration: Dio 74 μM, Yecora E 148 μM) that resulted to the same oxidative stress, the reduced PSII excitation pressure and the better PSII functioning of the Al-resistant cultivar was probably due to the larger concentrations of Ca2+ and Mg2+ in the leaves. We propose that the different sensitivities of wheat cultivars to Al3+ toxicity can be correlated to differences in the redox state of QA. Thus, chlorophyll fluorescence measurements can be a promising tool for rapid screening of Al resistance in wheat cultivars.  相似文献   
3.
Moustakas  M.  Eleftheriou  E.P.  Ouzounidou  G. 《Photosynthetica》1998,34(2):169-177
A 24 h exposure of the salt-tolerant grass Thinopyrum bessarabicum (Savul. and Rayss) A. Love seedlings to 1 mM aluminium (Al) in nutrient solution at pH of 9.0 resulted in a significant reduction of the biomass. In control samples the mesophyll chloroplasts exhibited the usual lens shape with most grana arranged in straight or slightly curving lines, and only 6.5 % of the grana were out of order. In Al-treated plants the mesophyll chloroplasts displayed a slightly distorted shape and distended size with most grana arranged in bow-like lines, while in the central region of the organelle as many as 26.7 % of the grana were independent and out of order in relation to the long axis. The morphological changes in the chloroplast shape and grana arrangement were probably due to swelling and distension of the chloroplasts in consequence to the altered membrane permeability. The initial in vivo chlorophyll (Chl) fluorescence FO, as well as the intermediate FI and peak fluorescence FP were increased under the Al stress: this indicated a destruction of photosystem (PS) 2 reaction centres and increased reduction of QA. The (FI-FO)/(FP-FO) ratio exhibited a significant increase indicating higher proportion of PS2 centres unable to reduce QB. Changes in the chloroplast ultrastructure seemed to be the reason of photosynthetic electron transport inhibition. Yet all these changes in the photosynthetic performance and chloroplast ultrastructure were considered as indirect effects of Al treatment since Al concentration in the leaves was undetectable. Disturbances in the chloroplast ultrastructure could be caused by a reduced uptake and/or transport of other nutrients.  相似文献   
4.
A 24 h exposure of the salt-tolerant grass Thinopyrum bessarabicum (Savul. and Rayss) A. Love seedlings to 1 mM aluminium (Al) in nutrient solution at pH of 9.0 resulted in a significant reduction of the biomass. In control samples the mesophyll chloroplasts exhibited the usual lens shape with most grana arranged in straight or slightly curving lines, and only 6.5 % of the grana were out of order. In Al-treated plants the mesophyll chloroplasts displayed a slightly distorted shape and distended size with most grana arranged in bow-like lines, while in the central region of the organelle as many as 26.7 % of the grana were independent and out of order in relation to the long axis. The morphological changes in the chloroplast shape and grana arrangement were probably due to swelling and distension of the chloroplasts in consequence to the altered membrane permeability. The initial in vivo chlorophyll (Chl) fluorescence FO, as well as the intermediate FI and peak fluorescence FP were increased under the Al stress: this indicated a destruction of photosystem (PS) 2 reaction centres and increased reduction of QA. The (FI-FO)/(FP-FO) ratio exhibited a significant increase indicating higher proportion of PS2 centres unable to reduce QB. Changes in the chloroplast ultrastructure seemed to be the reason of photosynthetic electron transport inhibition. Yet all these changes in the photosynthetic performance and chloroplast ultrastructure were considered as indirect effects of Al treatment since Al concentration in the leaves was undetectable. Disturbances in the chloroplast ultrastructure could be caused by a reduced uptake and/or transport of other nutrients. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
5.
The effect of Cu toxicity on photosynthetic function, chlorophyll and Ca2+ content of Cu-tolerant Silene compacta plants grown in nutrient solution was studied. Since, in plants grown under 8 μ M Cu, the chlorophyll and Ca2+ concentration as well as the photosystem II (PSII) photochemistry were increased, compared to the control, the development of an adaptive mechanism of the Cu-tolerant ecotype of S. compacta to 8 μ M Cu is suggested. Increased Cu tolerance of the S. compacta ecotype reflects modulation of the photosynthetic apparatus to optimize photosynthesis. However, exposure of plants to 160 μ M Cu resulted in a marked increase of the fraction of closed PSII centres and decreased quantum yield of PSII electron transport (ΦPSU) which was accompanied by a significant decline of relative quantum yield for O2 evolution (Aox/Apt). The concentration of chlorophyll and Ca2+ in leaves also decreased significantly under 160 μ M Cu treatment. Photochemical quenching (qp) displayed a reduction as a result of perturbation of the photosynthetic electron transfer chain, while non-photochemical quenching (qN) increased. High Cu treatment reduced photosynthetic productivity of S. compacta plants which can be attributed, in part, to pertubation of photosynthetic process and photosynthetic pigments as well as to Ca2+ loss.  相似文献   
6.
The effects of Cu2+ on growth, chlorophyll and other ion contents ofKoeleria splendens originated from Cu-contaminated soil have been investigated in nutrient solution. The most evident Cu2+ effects concern the root growth, especially the root length. Since in plants grown under lower Cu2+ concentrations (4 and 8 μM) root elongation, biomass, chlorophyll, Mg2+, Fe2+, Ca2+ and K+ content were increased compared with the control, the development of an adaptive mechanism ofK. splendens to Cu2+ is suggested. High Cu2+ concentration (160 μM) caused a significant reduction in root length and biomass as well as a decreased rate of chlorophyll biosynthesis. The reduction of growth can be correlated with the toxic effect of Cu2+ on photosynthesis, root respiration and protein synthesis in roots. 160 μM Cu2+-treatment had a negative influence on the concentrations of Ca2+, Fe2+, Mg2+ and K+ and a positive influence on the Cu2+ concentration in the plant tissues. Loss of nutrients similar to the senescence response suggests that excess of Cu2+ leads to the progressive senescence of the plants. Our results demonstrate the existence of an adaptive mechanism ofK. splendens under low Cu2+ concentrations, while high Cu2+ quantities cause disturbances in plant function.  相似文献   
7.
Salinity and drought are the most important abiotic stresses affecting crop yield. Broad bean was chosen as model plant for assessing the impact of salt stress and its interaction with drought in the field experiments. The factors examined in the experiments were the two irrigation rates (normal watering — NW with 3 L plant?1 and drought — D) and three salinity rates imposed by foliar application (0, 50, 100 mg L?1 NaCl). Highest NaCl level with normal water irrigation caused maximum reduction in plant height and production, which it was due to photosynthetic disturbances. Salt injuries were alleviated by increasing water stress. The control plants exposed to NaCl lost their ability over water control. The increased malondialdehyde (MDA) and H2O2 indicate the prevalence of oxidative stress due to salinity. The levels of proline and carbohydrates were higher under salinity alone than under simultaneous exposure to drought and NaCl. The protein concentration of immature and mature broad bean pods was more inhibited more by NaCl supply than by drought alone. The combination of drought and NaCl resulted in a significant increase in proteins, glucose, fructose and sucrose content. Overall, the ameliorative effect of drought under NaCl supply was quantified.  相似文献   
8.
Agropyron bessarabicum (2n = 14),A. rechingeri (2n = 28),A. junceiforme (2n = 28),A. elongatum (2n = 14),A. flaccidifolium (2n = 28) andA. scirpeum (2n = 28) were studied by isoelectric focusing of seed soluble proteins.—The protein profiles obtained from the six taxa showed a striking degree of similarity; typically they consist of 40 bands. No qualitative but only quantitative differences (in the intensity of some bands) were found.—Combined with the cytological information available these protein data indicate that the two polyploid complexes must be placed in the recently erected genusThinopyrum with the genome designations:T. bessarabicum Jj1 Jj1,T. sartorii (=A. rechingeri) Jj1 Jj1 Jj3 Jj3,T. junceiforme Jj1 Jj1 Jj2 Jj2,T. elongatum Je1 Je1,T. flaccidifolium Je1 Je1 Je1 Je1 andT. scirpeum Je1 Je1 Je2 Je2.  相似文献   
9.
The influence of increasing copper concentrations on seed germination, seedling survival and radicle length ofMinuartia hirsuta, Silene compacta, Alyssum montanum andThlaspi ochroleucum was studied. Seed germination was highly affected by the higher Cu2+ concentrations (80 and 160 μM), while lower Cu2+ concentrations seemed to be necessary for seed germination, even for the plants originated from non-Cu2+-rich soils (i.e. A. montanum). Nevertheless, plants originated from Cu2+-rich soils (M. hirsuta, S. compacta) showed a higher demand of Cu2+ for rapid seed germination. Cu2+ at higher concentrations severely reduced growth rate of radicle, especially inA. montanum andT. ochroleucum. These data clearly indicate the reduced suitability of the above mentioned plant species for reclamation on Cu2+ soils. Lower Cu2+-concentrations had no influence on seedling survival inM. hirsuta andS. compacta, but a progressive reduction of a number of survived seedlings with increasing Cu2+ concentration was found, that was more pronounced inA. montanum andT. ochroleucum.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号