排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
Kinetic parameters of nitrate uptake by different catch crop species: effects of low temperatures or previous nitrate starvation 总被引:8,自引:0,他引:8
The pollution of aquifers by NO?3 in temperate environments is aggravated by farming practices that leave the ground bare during winter. The use of catch crops during this time may decrease nitrate loss from the soil. Nitrate uptake by several catch crop species (Brassica napus L., Sinapis alba L., Brassica rapa L., Raphanus sativus L., Trifolium alexandrinum L., Trifolium incarnatum L., Phacelia tanacetifolia Benth., Lolium perenne L., Lolium multiflorum Lam. and Secale cereale L.) was here studied in relation to transpiration rate and low temperatures applied to the whole plant or to roots only. The Michaelis constant (Km), maximum uptake rate (Vmax), time of induction and contributions of inducible and constitutive mechanisms were estimated from measurements of NO?3 depletion in the uptake medium. There were large differences between species, with Km (μM) values ranging between 5.12 ± 0.64 (Trifolium incarnatum) and 36.4 ± 1.97 (Lolium perenne). Maximum NO?3 uptake rates expressed per unit root weight were influenced by ageing, temperature and previous NO?3 nutrition. They were also closely correlated with water flow through the roots and with shoot/root ratio of these species. The combined results from all species and treatments showed that Vmax increased with shoot/root ratio, suggesting a regulatory role for the shoots in NO?3 uptake. Overall, the results showed a great diversity in NO?3 uptake characteristics between species in terms of kinetic parameters, contribution of the constitutive system (100% of total uptake in ryegrass, nil in Fabaceae) and time of induction. 相似文献
2.
Mustapha Arkoun Laëtitia Jannin Philippe Laîné Philippe Etienne Céline Masclaux-Daubresse Sylvie Citerne Maria Garnica José-Maria Garcia-Mina Jean-Claude Yvin Alain Ourry 《Plant and Soil》2013,362(1-2):79-92
Background and aims
Urea is the major nitrogen (N) form supplied as fertilizer in agriculture. However, urease, a nickel-dependent enzyme, allows plants to use external or internally generated urea as a nitrogen source. Since a urease inhibitor is frequently applied in conjunction with urea fertilizer, the N-metabolism of plants may be affected. The aim of this study was to determine physiological and molecular effects of nickel deficiency and a urease inhibitor on urea uptake and assimilation in oilseed rape.Methods
Plants were grown on hydroponic solution with urea as the sole N source under three treatments: plants treated with nickel (+Ni) as a control, without nickel (?Ni) and with nickel and phenylphosphorodiamidate (+Ni+PPD). Urea transport and assimilation were investigated.Results
The results show that Ni-deficiency or PPD supply led to reduced growth and reduced 15N-uptake from urea. This effect was more pronounced in PPD-treated plants, which accumulated high amounts of urea and ammonium. Thus, Ni-deficiency or addition of PPD, limit the availability of N and decreased shoot and root amino acid content. The up-regulation of BnDUR3 in roots indicated that this gene is a component of the stress response to nitrogen-deficiency. A general decline of glutamine synthetase (GS) activity and activation of glutamate dehydrogenase (GDH) and increases in its expression level were observed in control plants. At the same time, in (?N) or (+Ni+PPD) treated plants, no increases in GS or GDH activities and expression level were found.Conclusions
Overall results showed that plants require Ni as a nutrient (while most widely used nutrient solutions are devoid of Ni), whether they are grown with or without a urea supply, and that urease inhibitors may have deleterious effects at least in hydroponic grown oilseed rape. 相似文献3.
A role for nitrogen reserves in forage regrowth and stress tolerance 总被引:20,自引:0,他引:20
Carbohydrate accumulation and utilization during shoot regrowth after defoliation and winter has been studied extensively in most species used as forage. However, recent work suggests that N reserves found in vegetative tissues also are important for defoliation tolerance and winter hardiness. Results suggest that these N reserves constitute an alternative N source used when N2 fixation and/or mineral N uptake are reduced. 15 N labelling experiments indicate that a large proportion of herbage N is derived from N reserves mobilized from stem bases or roots to developing leaves and shoots. Amino acids and specific proteins (i.e. vegetative storage proteins, VSPs) are deposited in roots and stem bases and, in the case of VSPs, are degraded rapidly after defoliation. Identification and characterization of VSPs will increase our understanding of the role N reserves play in stress tolerance and may lead to innovative approaches for improving forage persistence and productivity. 相似文献
4.
Roots of higher plants are usually exposed to varying spatial and temporal changes in concentrations of soil mineral nitrogen. A split root system was used to see how Lolium multiflorum Lam. roots adapt to such variations to cope with their N requirements. Plants were grown in hydroponic culture with their root system split in two spatially separated compartments allowing them to be fed with or without KNO3. Net NO3- uptake, 15NO3- influx and root growth were studied in relation to time. Within less than 24 h following deprivation of KNO3 to half the roots, the influx in NO3- fed roots was observed to increase (about 200% of the influx measured in plant uniformly NO3- supplied control plant) thereby compensating the whole plant for the lack of uptake by the N deprived roots. Due to the large NO3- concentrations in the roots, the NO3- efflux was also increased so that the net uptake rate increased only slightly (35% maximum) compared with the values obtained for control plants uniformly supplied with NO3-. This increase in net NO3- uptake rate was not sufficient to compensate the deficit in N uptake rate of the NO3- deprived split root in the short term. Over a longer period (>1 wk), root growth of the part of the root system locally supplied with NO3- was stimulated. An increase in root growth was mainly responsable for the greater uptake of nitrate in Lolium multiflorum so that it was able to fully compensate the deficit in N uptake rate of the NO3- deprived split root. 相似文献
5.
Shoot N concentration in plants decreases as they get bigger, due to the fact that N accumulates less rapidly than dry matter in plants during the plant growth process, leading to an allometric relationship between shoot N content (N(sh)) and shoot mass (W(sh)): N(sh)=a(W(sh))b. The results obtained on lucerne plants growing either under controlled low density conditions or in dense stands under field conditions show that the value of the allometric coefficient b that represents the ratio between the relative N accumulation rate in shoots [dN(sh)/(N(sh)dt)] and the relative growth rate [dW(sh)/(W(sh)dt)], decreases from 0.88 for a low plant density to 0.72 for a dense stand. Therefore, the fractional increase of shoot N per unit of shoot dry matter is lower when plants are in competition for light in dense canopies. This decrease can be entirely explained by the parallel decline in the leaf area per unit of shoot mass. Thus, a remarkably constant linear relationship can be established between N(sh) and leaf area (LA): N(sh)=1.7 g m(-2) LA, regardless of the conditions (low versus high density, controlled versus field conditions). Moreover, in a field dense stand, the comparison of plants with contrasting positions between the top and the bottom of the canopy (dominant, intermediate or suppressed plants), also shows that the difference in N(sh) at similar shoot mass is explained by the proportion of leaf mass to shoot mass. These data support the idea that leaf growth drives the dynamics of shoot N accumulation. These results also indicate that competition for light among individual plants within a dense canopy induces developmental changes in plant morphology (leaf:stem ratio) that explain the differences observed in shoot N concentration. This last observation could be extrapolated to multi-specific plant stands. Therefore, the sharing of N resources among plant species could partially be the result of the sharing of light within the canopy. 相似文献
6.
The osmotic role of nitrate during aftermath growth of Lolium perenne L. cv. Réveille was investigated. Plants were grown from seed in a controlled environment using a liquid medium with 1.0 m M NH4 NO3 as nitrogen source.
Eight-week-old plants were cut 4.0 cm above the root system and then harvested over a 14-day period of regrowth on the same initial nutrient solution, except that nitrate was15 N labelled. Throughout the experimental period, nitrate storage and reduction in roots were low. In stubble and especially in leaves, nitrate accumulated during the first 6 days of regrowth whereas nitrate reduction mainly occurred after this period. Analyses of carbohydrate, chloride and potassium contents in stubble and leaves showed that the accumulation of nitrate osmotically compensated for the decrease in soluble sugars during the first 6 days of regrowth.
The cumulative osmotic potential of sugars, chloride and nitrate in differently treated plants was studied in stubble and leaves. Compared with uncut plants, the lower carbohydrate concentrations found in cut plants regrowing on 1.0 m M NH4 NO3 were compensated for by an accumulation of nitrate. During aftermath growth on low nitrogen nutrition (0.2 m M NH4 NO3 ), chloride replaced nitrate, supporting the proposed osmotic function of nitrate.
It is concluded that nitrate is involved in the osmotic adjustment of ryegrass during regrowth after cutting. 相似文献
Eight-week-old plants were cut 4.0 cm above the root system and then harvested over a 14-day period of regrowth on the same initial nutrient solution, except that nitrate was
The cumulative osmotic potential of sugars, chloride and nitrate in differently treated plants was studied in stubble and leaves. Compared with uncut plants, the lower carbohydrate concentrations found in cut plants regrowing on 1.0 m M NH
It is concluded that nitrate is involved in the osmotic adjustment of ryegrass during regrowth after cutting. 相似文献
7.
8.
V. Bouchart J. H. Macduff A. Ourry M. M. Svenning A. P. Gay J. C. Simon J. Boucaud 《Physiologia plantarum》1998,104(1):65-74
The seasonal pattern of concentrations of nitrogen, starch and vegetative storage protein (VSP) in stolons of Trifolium repens L. grown in the field were studied. Two different genotypes, cv. Aran and cv. Rivendel, differing in their morphology (stolon thickness and branching rate) but with similar growth rates, were used. Maximum concentrations of starch were found in summer whereas hydrolysis of starch took place throughout winter, suggesting that C storage is more important for winter survival than for promotion of early spring growth. On the other hand, VSP and nitrogen accumulated in autumn and early winter and then decreased when growth was resumed during early spring. For both cultivars, an inverse relationship was found between VSP concentration in stolons and mean air temperature, suggesting that VSP accumulation may be triggered by low temperature. Further experiments with plants grown under different regimes of temperature and daylength, suggested that VSP synthesis is stimulated by low root temperatures, with a slight synergistic effect of short daylength.
The effects of root temperature on growth, N2 fixation, NH4 + uptake and N allocation within Trifolium repens L., were studied under controlled conditions. The shoot growth rate was greatly reduced when root temperatures were lowered from 12 to 6°C, while the rate of stolon growth was less affected. Low root temperatures inhibited N2 fixation more than it did NH4 + uptake, but the relative allocation of N to stolons was increased. Lowering root temperature also increased the accumulation of VSP in stolons. These results are discussed in terms of the mechanism associated with low temperature stimulation of VSP accumulation and its coupling with changes in the source/sink relations for allocation of N, between growth and storage. 相似文献
The effects of root temperature on growth, N
9.
10.
To investigate the responses of pathogenesis-related (PR) proteins to the intensity of drought stress and their physiological significance in white clover ( Trifolium repens L.), the change of enzyme activity and its relationship with some physiological parameters were assessed for 28 days under well-watered (control) and water-deficit conditions. Water-deficit treatment gradually decreased leaf water potential (Ψw ) to −2.33 MPa at day 28. Dry matter significantly decreased from 21 days of water-deficit treatment, while proline and ammonia concentration increased within 7 days. The increase in PR-protein activity was closely related with the decrease in Ψw . The β-1,3-glucanase (EC 3.2.1.39) activity in water-deficit leaves rapidly increased for the first 14 days (Ψw ≥ −1.67) and then slightly decreased, while the chitinase (EC 3.2.1.14) and cellulase (EC 3.2.1.4) activity continued to increase throughout the experimental period. The enhanced activation of β-1,3-glucanase, chitinase and cellulase for the period of days 0–14 was significantly ( P ≤ 0.01) related to the increase of proline and ammonia concentrations. The results indicate that the enhanced activity of β-1,3-glucanase, cellulase and chitinase for the early period might be an act of transient tolerance to drought stress, but the activation of these enzymes during terminal stress might be a drought-stress-induced injurious symptom. 相似文献