首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2002年   1篇
  1992年   1篇
  1991年   1篇
  1975年   1篇
  1972年   2篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
It is at the population level that an invasion either fails or succeeds. Lantana camara L. (Verbenaceae) is a weed of great significance in Queensland Australia and globally but its whole life-history ecology is poorly known. Here we used 3 years of field data across four land use types (farm, hoop pine plantation and two open eucalyptus forests, including one with a triennial fire regime) to parameterise the weed’s vital rates and develop size-structured matrix models. Lantana camara in its re-colonization phase, as observed in the recently cleared hoop pine plantation, was projected to increase more rapidly (annual growth rate, λ = 3.80) than at the other three sites (λ 1.88–2.71). Elasticity analyses indicated that growth contributed more (64.6 %) to λ than fecundity (18.5 %) or survival (15.5 %), while across size groups, the contribution was of the order: juvenile (19–27 %) ≥ seed (17–28 %) ≥ seedling (16–25 %) > small adult (4–26 %) ≥ medium adult (7–20 %) > large adult (0–20 %). From a control perspective it is difficult to determine a single weak point in the life cycle of lantana that might be exploited to reduce growth below a sustaining rate. The triennial fire regime applied did not alter the population elasticity structure nor resulted in local control of the weed. However, simulations showed that, except for the farm population, periodic burning could work within 4–10 years for control of the weed, but fire frequency should increase to at least once every 2 years. For the farm, site-specific control may be achieved by 15 years if the biennial fire frequency is tempered with increased burning intensity.  相似文献   
2.
Invasive alien plant species threaten agriculture and biodiversity globally and require ongoing management to minimise impacts. However, the large number of invasive species means that a risk‐based approach to prioritisation is needed, taking into account the spatial scale of management decisions and myriad of available information. Here, we developed a risk‐based inventory of invasive plants in Queensland, Australia, using both current species distribution/abundance and the severity of their impacts. Our assessment followed a comprehensive data collection process including a scoping of local government pest management plans, herbarium records, the published literature and structured elicitation of expert knowledge during a series of regional stakeholder workshops. From ~300 plant species that were identified as established and/or emerging invaders in the State, only one‐third were considered by practitioners to pose significant risks across regions to be considered management priorities. We aggregated regional species lists into a statewide priority list and analysed the data set (107 species) for historical, geographical, floristic and ecological patterns. Regions on the mainland eastern seaboard of the State share similar invasive plant communities, suggesting that these regions may form a single management unit, unlike the western/inland and the extreme far north (Torres Strait Islands) regions, which share fewer invasive plant species. Positive correlations were detected between invasiveness and time since introduction for some but not all plant life forms. Stakeholders identified research and management priorities for the invasive plant list, including biological control options, public awareness/education, effective herbicide use, ecology/taxonomy and risk analysis. In the course of the exercise, a statewide invasive plant priority list of high‐, medium‐ and low‐impact scores for policy, research and management was compiled. Finally, our approach to invasive plant species prioritisation highlighted that planning and policy documents are not necessarily reflected at the grass‐root level in terms of species identity and management priorities.  相似文献   
3.
In rainforests, trunk size, strength, crown position, and geometry of a tree affect light interception and the likelihood of mechanical failure. Allometric relationships of tree diameter, wood density, and crown architecture vs. height are described for a diverse range of rainforest trees in Brunei, northern Borneo. The understory species follow a geometric model in their diameter-height relationship (slope, β = 1.08), while the stress-elasticity models prevail (β = 1.27-1.61) for the midcanopy and canopy/emergent species. These relationships changed with ontogeny, especially for the understory species. Within species, the tree stability safety factor (SSF) and relative crown width decreased exponentially with increasing tree height. These trends failed to emerge in across-species comparisons and were reversed at a common (low) height. Across species, the relative crown depth decreased with maximum potential height and was indistinguishable at a common (low) height. Crown architectural traits influence SSF more than structural property of wood density. These findings emphasize the importance of applying a common reference size in comparative studies and suggest that forest trees (especially the understory group) may adapt to low light by having deeper rather than wider crowns due to an efficient distribution and geometry of their foliage.  相似文献   
4.
BACKGROUND AND AIMS: Species of the Nepenthaceae family are under-represented in studies of leaf traits and the consequent view of mineral nutrition and limitation in carnivorous plants. This study is aimed to complement existing data on leaf traits of carnivorous plants. METHODS: Physico-chemical properties, including construction costs (CC), of the assimilatory organs (leaf and pitcher) of a guild of lowland Nepenthes species inhabiting heath and/or peat swamp forests of Brunei, Northern Borneo were determined. KEY RESULTS: Stoichiometry analyses indicate that Nepenthes species are nitrogen limited. Most traits vary appreciably across species, but greater variations exist between the assimilatory organs. Organ mass per unit area, dry matter tissue concentration (density), nitrogen (N), phosphorus (P), carbon, heat of combustion (H(c)) and CC values were higher in the leaf relative to the pitcher, while organ thickness, potassium (K) and ash showed the opposite trend. Cross-species correlations indicate that joint rather than individual consideration of the leaf and the pitcher give better predictive relationships between variables, signalling tight coupling and functional interdependence of the two assimilatory organs. Across species, mass-based CC did not vary with N or P, but increases significantly with tissue density, carbon and H(c), and decreases with K and ash contents. Area-based CC gave the same trends (though weaker in strength) in addition to a significant positive correlation with tissue mass per unit area. CONCLUSIONS: The lower CC value for the pitcher is in agreement with the concept of low marginal cost for carnivory relative to conventional autotrophy. The poor explanatory power of N, P or N : P ratio with CC suggests that factors other than production of expensive photosynthetic machinery (which calls for a high N input), including concentrations of lignin, wax/lipids or osmoregulatory ions like K(+), may give a better explanation of the CC variation across Nepenthes species.  相似文献   
5.
Ants are the dominant soil faunal group in many if not most terrestrial ecosystems, and play a key role in soil structure and function. This study documents the impacts of invasion by the exotic cat’s claw creeper vine, Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) on surface-situated (epigaeic) and subterranean (hypogaeic) ant communities in subtropical SE Queensland Australia where it is a major environmental weed of riparian areas, rainforest communities and remnant natural vegetation, smothering standing vegetation and causing canopy collapse. Soil ants were sampled in infested and uninfested areas at eight sites spanning both riparian and non-riparian habitats in subtropical SE Queensland. Patterns of ant species composition and functional grouping in response to patch invasion status, landscape type and habitat stratum were investigated using ANOVA and non-metric multidimensional scaling ordination. The epigaeic and subterranean strata supported markedly different ant assemblages, and ant communities also differed between riparian and non-riparian habitats. However, M. unguis-cati invasion had a surprisingly limited impact. There was a tendency for ant abundance and species richness to be lower in infested patches, and overall species composition was different between infested and uninfested patches, but these differences were relatively small, and did not occur consistently across sites. There were changes in functional group composition that conformed to known functional group responses to environmental change, but these were similarly limited and inconsistent across sites. Our study has shown that ant communities are surprisingly resilient to invasion by M. unguis-cati, and serves as a warning against making assumptions about invasion impacts based on visual appearances.  相似文献   
6.
ABSTRACT

Parthenium is a Weed of National Significance in Australia. Biological control of parthenium in Australia commenced in 1977 and since then nine insect species and two rust fungi have been introduced and established. Seven of them are widespread, however the time taken for field establishment varied widely between various agents, ranging from one to 15 years. Among them, the stem-galling Epiblema moth, the stem-boring Listronotus weevil, the seed-feeding Smicronyx weevil and the root-feeding Carmenta moth occur in all parthenium-infested areas at high population densities. The leaf-feeding Zygogramma beetle occurs only in central and southern Queensland, and not in northern Queensland. The parthenium summer rust occurs seasonally in central and northern Queensland, while the parthenium winter rust is more widespread in southern Queensland than in central Queensland, but does not occur in north Queensland. The sap-feeding Stobaera planthopper and the leaf-mining Bucculatrix moth established and are widespread, but their damage levels remain very low. The stem-galling Conotrachelus weevil and the stem-boring Platphalonidia moth are believed to be established, but at very low abundance. Biological control has resulted in significant reductions in the abundance and impact of parthenium in Australia. As a result, the area infested with parthenium in central Queensland has declined since the mid-1990s. Due to the absence of many of the effective agents in southern and south-eastern Queensland, agents from central Queensland are being redistributed there. Additionally, based on Australian success, many of these agents have also been introduced into other countries around the world.  相似文献   
7.
8.
9.
Restoration of salt marsh habitat is becoming more common in Australia. However, little is known about restoring salt marshes on substrates contaminated by slag from iron smelting, which could affect microbial activity. This study, conducted near Newcastle, Australia, compares initial C, N, and P mass and decomposition of Sarcocornia quinqueflora (glasswort or samphire) from (1) a restoration site with a slag‐and‐mud substrate, (2) the restoration site's donor marsh, and (3) other nearby sites sampled to provide information on background variability. A litterbag technique with a 180‐day incubation period was used to quantify total, C, N, and P mass losses from decomposition. Although there were significant differences between sites in initial N mass and loss of C and P over the period of our study, the presence of slag did not slow decomposition rates as measured using litterbags. Further work is needed to assess other aspects of wetland structure and function on slag substrates.  相似文献   
10.
Parthenium hysterophorus L. (Asteraceae) utilises multiple mechanisms to facilitate its dispersal. It has been speculated that the cypsela, the propagule of this species, can be dispersed by water under varying environmental conditions. Four experiments were conducted to test this hypothesis, using simulated shaking and immersion to test floating ability and viability of the propagule in water. The influence of the acidity of the immersion medium on cypsela viability was also examined. Our results revealed that the freshly harvested cypselae could float on river water for at least 20 days, although around 80% sank within a week if moderate or severe turbulence was applied. Sinkage was observed to be more rapid in naked seeds (within a day) than in cypsela (within a week). On still water surfaces, germination occurred within a week but extended to 1.5 weeks under turbulent conditions due to sinkage. In river water, initial germination of floating cypselae was greater (70%) under illuminated conditions as compared to dark conditions (20%). The viability of immersed cypselae was found to remain high in distilled water for 45 days, when immersion was in cool conditions (10 or 15°C). However, in moderate (20 and 24°C) or warm (25 and 30°C) conditions, the rate of viability loss increased, and at 34°C, around 50% of the cypselae died after 20 days of immersion. Similar trends for cypselae longevity were observed in studies using river and pond water; viability loss was faster, especially in pond water. In summary, a proportion of cypselae will float in turbulent water and could be carried significant distances in river systems. Immersed cypselae can remain viable for weeks and can germinate on contact with soil. Water bodies or floods are therefore considered as important pathways in parthenium weed dispersal; hence, post‐flood monitoring is strongly recommended to minimise its spread.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号