首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   13篇
  208篇
  2022年   4篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   6篇
  2012年   13篇
  2011年   17篇
  2010年   6篇
  2009年   4篇
  2008年   10篇
  2007年   6篇
  2006年   6篇
  2005年   7篇
  2004年   4篇
  2003年   9篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   9篇
  1980年   5篇
  1979年   7篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1966年   1篇
  1941年   2篇
排序方式: 共有208条查询结果,搜索用时 0 毫秒
1.
Caspases are intracellular proteases that cleave substrates involved in apoptosis or inflammation. In C. elegans, a paradigm for caspase regulation exists in which caspase CED-3 is activated by nucleotide-binding protein CED-4, which is suppressed by Bcl-2-family protein CED-9. We have identified a mammalian analog of this caspase-regulatory system in the NLR-family protein NALP1, a nucleotide-dependent activator of cytokine-processing protease caspase-1, which responds to bacterial ligand muramyl-dipeptide (MDP). Antiapoptotic proteins Bcl-2 and Bcl-X(L) bind and suppress NALP1, reducing caspase-1 activation and interleukin-1beta (IL-1beta) production. When exposed to MDP, Bcl-2-deficient macrophages exhibit more caspase-1 processing and IL-1beta production, whereas Bcl-2-overexpressing macrophages demonstrate less caspase-1 processing and IL-1beta production. The findings reveal an interaction of host defense and apoptosis machinery.  相似文献   
2.

Background  

The timing of the origin of introns is of crucial importance for an understanding of early genome architecture. The Exon theory of genes proposed a role for introns in the formation of multi-exon proteins by exon shuffling and predicts the presence of conserved splice sites in ancient genes. In this study, large-scale analysis of potential conserved splice sites was performed using an intron-exon database (ExInt) derived from GenBank.  相似文献   
3.
Using metrizamide gradient centrifugation two populations of Leydig cells were found in both 60-90 day-old and 24 month-old rats. Cells from both Band 2 (B2) and Band 3 (B3) responded to LH stimulation with increased cyclic AMP formation; however, only B3 cells produced significant amounts of testosterone. Cells from both B2 and B3 of the old rats synthesized less cyclic AMP and testosterone than cells from their younger counterparts. In response to LH stimulation, 0.01 - 1.0 mIU/ml, no appreciable difference of cyclic AMP formation could be detected between young and old Leydig cells. Maximal testosterone production occurred when 1 mIU/ml LH was used. Only when LH concentration was increased to 10 and 100 mIU/ml, did young Leydig cells produce significantly more cyclic AMP than old Leydig cells. After addition of 5X10(-7)M of pregnenolone or progesterone to the incubation medium, both young and old Leydig cells produced comparable amounts of testosterone. These results demonstrate no impairment of old rat Leydig cells to synthesize testosterone from pregnenolone and progesterone.  相似文献   
4.

Background  

The physiological regulation of ciliary beat frequency (CBF) within the fallopian tube is important for controlling the transport of gametes and the fertilized ovum. Progesterone influences gamete transport in the fallopian tube of several mammalian species. In fallopian tubes isolated from cows, treatment with 20 micromolar progesterone caused a rapid reduction of the tubal CBF. The aims of this study were to establish methodology for studying fallopian tube CBF in the mouse, as it is an important model species, and to investigate if progesterone rapidly affects the CBF of mice at nM concentrations.  相似文献   
5.
6.
  总被引:25,自引:0,他引:25  
Natural resistance of mice to lethal ifections of Rickettsia tsutsugamushi, strain Gilliam, is controlled by a single, autosomal, dominant gene, which we have designated Ric, with r and s representing the resistant nd susceptible alleles, respectively. Using three sets of recombinant inbred mouse strains (BXD, BXH, and BXJ), the Ric locus was mapped to Chromosome 5 closely linked to the retinal degeneration (rd) locus. This linkage was confirmed by a backcross analysis. Based on the RI strains and the C57BL/6Ty-le congenic strain (the only proven Ric-rd cross-over), we estimate the recombination frequency between Ric and rd to be 0.015. Three presumptive Ric-rd recombinants detected among 93 backcross mice may represent caes of incomplete penetrance of the resistance allele rather than recombination. Analyis of th C57BL/6JTy-le congenic strain indicates that Ric is proximal to rd on Chromosome 5. If so, the correct gene order is Pgm-1-W-Ric-rd-Gus.  相似文献   
7.
Haemophilus influenzae NadR protein (hiNadR) has been shown to be a bifunctional enzyme possessing both NMN adenylytransferase (NMNAT; EC ) and ribosylnicotinamide kinase (RNK; EC ) activities. Its function is essential for the growth and survival of H. influenzae and thus may present a new highly specific anti-infectious drug target. We have solved the crystal structure of hiNadR complexed with NAD using the selenomethionine MAD phasing method. The structure reveals the presence of two distinct domains. The N-terminal domain that hosts the NMNAT activity is closely related to archaeal NMNAT, whereas the C-terminal domain, which has been experimentally demonstrated to possess ribosylnicotinamide kinase activity, is structurally similar to yeast thymidylate kinase and several other P-loop-containing kinases. There appears to be no cross-talk between the two active sites. The bound NAD at the active site of the NMNAT domain reveals several critical interactions between NAD and the protein. There is also a second non-active-site NAD molecule associated with the C-terminal RNK domain that adopts a highly folded conformation with the nicotinamide ring stacking over the adenine base. Whereas the RNK domain of the hiNadR structure presented here is the first structural characterization of a ribosylnicotinamide kinase from any organism, the NMNAT domain of hiNadR defines yet another member of the pyridine nucleotide adenylyltransferase family.  相似文献   
8.
9.
Nicotinamide/nicotinate mononucleotide (NMN/ NaMN)adenylyltransferase (NMNAT) is an indispensable enzyme in the biosynthesis of NAD(+) and NADP(+). Human NMNAT displays unique dual substrate specificity toward both NMN and NaMN, thus flexible in participating in both de novo and salvage pathways of NAD synthesis. Human NMNAT also catalyzes the rate-limiting step of the metabolic conversion of the anticancer agent tiazofurin to its active form tiazofurin adenine dinucleotide (TAD). The tiazofurin resistance is mainly associated with the low NMNAT activity in the cell. We have solved the crystal structures of human NMNAT in complex with NAD, deamido-NAD, and a non-hydrolyzable TAD analogue beta-CH(2)-TAD. These complex structures delineate the broad substrate specificity of the enzyme toward both NMN and NaMN and reveal the structural mechanism for adenylation of tiazofurin nucleotide. The crystal structure of human NMNAT also shows that it forms a barrel-like hexamer with the predicted nuclear localization signal sequence located on the outside surface of the barrel, supporting its functional role of interacting with the nuclear transporting proteins. The results from the analytical ultracentrifugation studies are consistent with the formation of a hexamer in solution under certain conditions.  相似文献   
10.
PhoH protein is a putative ATPase belonging to the phosphate regulon in Escherichia coli. EC-PhoH homologs are present in different organisms, but it is not clear if they are functionally related, besides nothing is known about their regulation. To distinguish true functional orthologs of EC-PhoH in different classes of bacteria and to identify their functional role in bacterial metabolic network we performed phylogenetic analysis of these proteins and comparative study of position and regulation of the related genes. Three groups of proteins were identified. Proteins of the first group (BS-PhoH orthologs) are present in most of bacteria and are proposed to be functionally linked to phospholipid metabolism and RNA modification. Proteins of the second group (BS-YlaK orthologs) are present in most of aerobes and Actinobacterial YlaK orthologs are shown to be members of a fatty acid beta-oxidation regulons. EC-PhoH orthologs are classified in a third group, specific for Enterobacteria. Functional role of PhoH homologs in the lipid and RNA metabolism and proposed interrelation of PhoH paralogs in one organism are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号