首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2016年   1篇
  2012年   1篇
  2010年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.

Background

Influenza viruses bind and infect respiratory epithelial cells through sialic acid on cell surface. Differential preference to sialic acid types contributes to host- and tissue-tropism of avian and seasonal influenza viruses. Although the highly pathogenic avian influenza virus H5N1 can infect and cause severe diseases in humans, it is not efficient in infecting human upper respiratory tract. This is because of the scarcity of its receptor, α2,3-linked sialic acid, in human upper airway. Expression of sialic acid can be influenced by various factors including inflammatory process. Allergic rhinitis and nasal polyp are common inflammatory conditions of nasal mucosa and may affect expression of the sialic acid and susceptibility to influenza infection.

Methodology/Principal Finding

To test this hypothesis, we detected α2,3- and α2,6-linked sialic acid in human nasal polyp and normal nasal mucosal tissues by lectin staining and infected explants of those tissues with avian influenza viruses H5N1 and seasonal influenza viruses. We show here that mucosal surface of nasal polyp expressed higher level of α2,3- and α2,6-linked sialic acid than normal nasal mucosa. Accordingly, both H5N1 avian influenza viruses and seasonal influenza viruses replicated more efficiently in nasal polyp tissues explants.

Conclusions/Significance

Our data suggest a role of nasal inflammatory conditions in susceptibility to influenza infection, especially by avian influenza viruses, which is generally inefficient in infecting human upper airway. The increased receptor expression may contribute to increased susceptibility in some individuals. This may contribute to the gradual adaptation of the virus to human population.  相似文献   
2.
An avian influenza H5N1 virus that binds to a human-type receptor   总被引:8,自引:2,他引:6       下载免费PDF全文
Avian influenza viruses preferentially recognize sialosugar chains terminating in sialic acid-alpha2,3-galactose (SAalpha2,3Gal), whereas human influenza viruses preferentially recognize SAalpha2,6Gal. A conversion to SAalpha2,6Gal specificity is believed to be one of the changes required for the introduction of new hemagglutinin (HA) subtypes to the human population, which can lead to pandemics. Avian influenza H5N1 virus is a major threat for the emergence of a pandemic virus. As of 12 June 2007, the virus has been reported in 45 countries, and 312 human cases with 190 deaths have been confirmed. We describe here substitutions at position 129 and 134 identified in a virus isolated from a fatal human case that could change the receptor-binding preference of HA of H5N1 virus from SAalpha2,3Gal to both SAalpha2,3Gal and SAalpha2,6Gal. Molecular modeling demonstrated that the mutation may stabilize SAalpha2,6Gal in its optimal cis conformation in the binding pocket. The mutation was found in approximately half of the viral sequences directly amplified from a respiratory specimen of the patient. Our data confirm the presence of H5N1 virus with the ability to bind to a human-type receptor in this patient and suggest the selection and expansion of the mutant with human-type receptor specificity in the human host environment.  相似文献   
3.
In this study, the effect of innate serum inhibitors on influenza virus infection was addressed. Seasonal influenza A(H1N1) and A(H3N2), 2009 pandemic A(H1N1) (H1N1pdm) and highly pathogenic avian influenza (HPAI) A(H5N1) viruses were tested with guinea pig sera negative for antibodies against all of these viruses as evaluated by hemagglutination-inhibition and microneutralization assays. In the presence of serum inhibitors, the infection by each virus was inhibited differently as measured by the amount of viral nucleoprotein produced in Madin-Darby canine kidney cells. The serum inhibitors inhibited seasonal influenza A(H3N2) virus the most, while the effect was less in seasonal influenza A(H1N1) and H1N1pdm viruses. The suppression by serum inhibitors could be reduced by heat inactivation or treatment with receptor destroying enzyme. In contrast, all H5N1 strains tested were resistant to serum inhibitors. To determine which structure (hemagglutinin (HA) and/or neuraminidase (NA)) on the virus particles that provided the resistance, reverse genetics (rg) was applied to construct chimeric recombinant viruses from A/Puerto Rico/8/1934(H1N1) (PR8) plasmid vectors. rgPR8-H5 HA and rgPR8-H5 HANA were resistant to serum inhibitors while rgPR8-H5 NA and PR8 A(H1N1) parental viruses were sensitive, suggesting that HA of HPAI H5N1 viruses bestowed viral resistance to serum inhibition. These results suggested that the ability to resist serum inhibition might enable the viremic H5N1 viruses to disseminate to distal end organs. The present study also analyzed for correlation between susceptibility to serum inhibitors and number of glycosylation sites present on the globular heads of HA and NA. H3N2 viruses, the subtype with highest susceptibility to serum inhibitors, harbored the highest number of glycosylation sites on the HA globular head. However, this positive correlation cannot be drawn for the other influenza subtypes.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号