首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1997年   3篇
  1996年   3篇
  1992年   1篇
  1990年   2篇
  1985年   1篇
  1981年   1篇
排序方式: 共有52条查询结果,搜索用时 328 毫秒
1.
We investigated the role of testosterone (T) in territory establishment and maintenance in male red-winged blackbirds (Agelaius phoeniceus) by implanting exogenous T or pharmacological agents that block the action of T in nonterritorial floaters and territory owners. Floaters with artificially elevated plasma T levels were unable to obtain territories. Territory owners implanted with T did not expand their territories, although they engaged in more aggressive behavior than did control males. Flutamide, which binds to T receptors in target areas, had no effect on territoriality. However, most territory owners given a combination of flutamide and ATD, an aromatization blocker, lost portions of their territories even though they actively defended them. Our results 1) suggest that, although T influences aggressive behavior, elevated plasma levels alone are insufficient to overcome previously-established social relationships between territory owners or between owners and floaters; 2) indicate that impairing the action of T leads to reduced abilities of territory owners to maintain territories against vigorous challenges: and 3) support recent findings that T acts on reproductive behavior in birds through both androgenic and estrogenic metabolites.  相似文献   
2.
Ions can enhance water flow through the xylem via changes in the hydraulic resistance at border pit membranes. Because flow between adjacent xylem vessels occurs primarily via bordered pit fields, it is hypothesized that xylem sap ion concentrations would affect lateral movement of water more than longitudinal flow. Using tomato as a model system, evidence is presented for ion-mediated changes in xylem hydraulic resistance and the lateral transport of water. Water flow between adjacent xylem bundles increased by approximately 50% in the presence of ions while longitudinal flow only increased by approximately 20%. However, the enhancement of lateral exchange due to ions was magnified by the presence of a pressure difference between vascular bundles. These results indicate that the degree of nutrient-sharing among sectors of a plant may depend on both nutrient concentration and the availability of water in the root zone.  相似文献   
3.
Within-plant heterogeneity in growth, morphology, and chemistry is ubiquitous, and is commonly attributed to differences in tissue age, light availability, or previous damage by herbivores. Although these factors are important, we argue that plant vascular architecture is an underappreciated determinant of heterogeneity. Vascular architecture can restrict the transport of resources (nutrients, photosynthate, hormones, etc.) to within specific sectors of the plant: this is referred to as sectoriality. Although studies have documented sectoriality in the transport of isotopes and dyes from roots to shoots, the ecological consequences of this sectoriality remain poorly understood. We tested the hypothesis that spatial variation in belowground nutrient availability combined with sectorial transport results in localized "fertilization" of aboveground plant parts and generates heterogeneity in traits important to herbivores. Our split-root experiments with tomato (Lycopersicon esculentum Mill) clearly demonstrate that fertilization to isolated lateral roots generates heterogeneity in leaf morphology, phenolic chemistry, and side-shoot growth. Specifically, leaflets with direct connections to these lateral roots were larger and had lower levels of rutin and chlorogenic acid than did leaflets in other sectors lacking direct vascular connections. Moreover, side-shoot production was greater in the connected sectors. We discuss the implications of this heterogeneity for plant-herbivore interactions.  相似文献   
4.
5.
Australia, the flattest, driest, and geologically oldest vegetated continent, has a uniquely high proportion of nutrient-poor soils. We develop a "Nutrient-Poverty/Intense-Fire Theory," which postulates that most anomalous features of organisms and ecosystems of Australia are the evolutionary consequences of adaptations to nutrient poverty, compounded by intense fire that tends to occur as a result of nutrient poverty. The fundamental tenet of the theory is that plants growing in environments with plentiful light and periodic adequate moisture, but on soils poor in phosphorus, zinc, and other indispensible nutrients, can synthesize carbohydrates in excess of the amount that can be combined with, or catalyzed by, these nutrients for metabolism and production of nutrient-rich foliage and reproductive tissues. They use this "expendable energy" to produce well-defended foliage, large quantities of lignified tissues, and readily digestible exudates. Rapid accumulation of nutrient-poor biomass, a result of low rates of herbivory, provides fuel for intense fire. Intense fire exacerbates nutrient poverty by volatilizing certain micronutrients critical for animals. Anomalous features of organisms of Australia that can be explained by this theory, rather than by climate or phylogenetic history alone, include the following: most woody plants have long-lived, durable foliage; plants defend their tissues primarily with carbon-rich but nutrient-poor compounds; an unusually high proportion of plants protects seeds from fire and granivores in sturdy, woody capsules or follicles; plants allocate unusually large amounts of expendable energy to production of carbon-based exudates, such as nectar and gums; an unusually high proportion of plant species is pollinated by vertebrates that average larger size than pollinators on other continents; herbivores are small and have slow metabolism; there are no ruminants, mammals that eat mainly subterranean plant matter, or fungus-culturing termites and ants; vegetation dominated by leaf-spinescent plants is more extensive than vegetation dominated by stem-spinescent plants; nitrogen-fixing plants are major components of most vegetation types; there is a higher proportion of myrmecochorous plant species than on any other continent; there are hardly any stem-succulent and few leaf-succulent, perennial, non-halophytic plant species; and an unusually high proportion of bird species breeds cooperatively. Although the Nutrient-Poverty/Intense-Fire Theory can provide plausible explanations for these anomalous features, some puzzles remain, among them the great success of introduced herbivores, the lack of grazers on extensive grasslands on cracking clays, the apparently low productivity of ants, and the prominence of the parasitic plants of Australia. By examining the ratios of available energy to nutrients, particularly scarce nutrients, ecologists may identify processes not previously recognized as important for life forms or biotic adaptation on other continents.  相似文献   
6.
We investigated the effects of soil nutrient and water availability on the growth and chemistry of the silky willow (Salix sericea Marshall), and on the performance of the imported willow leaf beetle (Plagiodera versicolora Laichartig). Our major aims were to determine whether there are nutrient–water interactions on plant traits and whether this leads to parallel interactions for herbivore performance. We used a 2 × 3 fully factorial design, which consisted of high and low nutrient treatments crossed with dry, field capacity, and flooded water treatments. We found that nutrient additions increased plant growth, but only in field capacity and flooded conditions (nutrient–water interaction). Leaf nitrogen content also depended on the interaction between soil nutrients and water: nutrient addition resulted in a larger increase in foliar nitrogen in the field capacity treatment than in the flooded and dry treatments. Of the two phenolic glycosides measured, salicortin and 2′‐cinnamoylsalicortin, only one was affected by the treatments. 2′‐cinnamoylsalicortin concentration was lower in the high nutrient–dry treatment compared with the other treatments. In contrast to plant responses, there were no interactions found for larval or pupal weight or development time. Nutrient addition led to an increase in female pupal weight, and foliar N was positively correlated with female pupal weight and negatively correlated with female development time. In addition, leaf water was positively correlated with female development time. The lack of interactions for insect performance may stem from the small absolute differences in foliar nitrogen content associated with the interaction between the nutrients and water. Taken together, our results suggest that nutrient–water interactions influence plant traits that are potentially important for insect performance (leaf nitrogen and water), but these interactions do not produce parallel interactions in beetle performance.  相似文献   
7.
8.
9.
1. Interactions between invertebrate herbivores with different feeding modes are common on long-lived woody plants. In cases where one herbivore facilitates the success of another, the consequences for their shared host plant may be severe. Eastern hemlock (Tsuga canadensis), a canopy-dominant conifer native to the eastern U.S., is currently threatened with extirpation by the invasive stylet-feeding hemlock woolly adelgid (Adelges tsugae). The effect of adelgid on invasive hemlock-feeding folivores remains unknown. 2. This study evaluated the impact of feeding by hemlock woolly adelgid on gypsy moth (Lymantria dispar) larval preference for, and performance on, eastern hemlock. To assess preference, 245 field-grown hemlocks were surveyed for gypsy moth herbivory damage and laboratory paired-choice bioassays were conducted. To assess performance, gypsy moth larvae were reared to pupation on adelgid-infested or uninfested hemlock foliage, and pupal weight, proportional weight gain, and larval period were analysed. 3. Adelgid-infested hemlocks experienced more gypsy moth herbivory than did uninfested control trees, and laboratory tests confirmed that gypsy moth larvae preferentially feed on adelgid-infested hemlock foliage. Gypsy moth larvae reared to pupation on adelgid-infested foliage gained more weight than larvae reared on uninfested control foliage. 4. These results suggest that the synergistic effect of adelgid and gypsy moth poses an additional threat to eastern hemlock that may increase extirpation risk and ecological impact throughout most of its range.  相似文献   
10.

Aim

Species distribution models are important tools used to study the distribution and abundance of organisms relative to abiotic variables. Dynamic local interactions among species in a community can affect abundance. The abundance of a single species may not be at equilibrium with the environment for spreading invasive species and species that are range shifting because of climate change. Innovation : We develop methods for incorporating temporal processes into a spatial joint species distribution model for presence/absence and ordinal abundance data. We model non‐equilibrium conditions via a temporal random effect and temporal dynamics with a vector‐autoregressive process allowing for intra‐ and interspecific dependence between co‐occurring species. The autoregressive term captures how the abundance of each species can enhance or inhibit its own subsequent abundance or the subsequent abundance of other species in the community and is well suited for a ‘community modules’ approach of strongly interacting species within a food web. R code is provided for fitting multispecies models within a Bayesian framework for ordinal data with any number of locations, time points, covariates and ordinal categories.

Main conclusions

We model ordinal abundance data of two invasive insects (hemlock woolly adelgid and elongate hemlock scale) that share a host tree and were undergoing northwards range expansion in the eastern U.S.A. during the period 1997–2011. Accounting for range expansion and high inter‐annual variability in abundance led to improved estimation of the species–environment relationships. We would have erroneously concluded that winter temperatures did not affect scale abundance had we not accounted for the range expansion of scale. The autoregressive component revealed weak evidence for commensalism, in which adelgid may have predisposed hemlock stands for subsequent infestation by scale. Residual spatial dependence indicated that an unmeasured variable additionally affected scale abundance. Our robust modelling approach could provide similar insights for other community modules of co‐occurring species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号