首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   11篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   3篇
  2012年   10篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1995年   2篇
  1988年   1篇
  1984年   1篇
  1981年   2篇
排序方式: 共有72条查询结果,搜索用时 93 毫秒
1.
We have examined transgene methylation in the DNA from the livers of a pedigree of mice carrying three copies of an integrated MToGH1 transgene. Utilizing the methylation-sensitive isoschizomersMsp I andHpa II, Southern blot analysis revealed that all second generation animals derived from a transgenic female had hypermethylated DNA, whereas first generation animals sired by a transgenic male displayed a range of methylation phenotypes ranging from no methylation to hypermethylation of the transgene sequences. Of the mice that exhibited hypermethylation of the transgene in CpG dinucleotides (CmCGG), a minority of these animals also exhibited apparent CpC methylation (i.e. inhibition ofMsp I cutting, presumably blocked by methylation of the outer C of CCGG). Methylation was also examined in the inner C of CC(A/T)GG sequences in the MToGH1 transgene using the isoschizomer pairBstN I andEcoR II. A minority of MToGH1 animals in the F1 generation showed clear evidence of methylation in these sites as well as in the inner and outer Cs of CCGG sites. An examination of MToGH1 expression in terms of oGH levels in serum revealed that there was a high degree of variation in the levels of circulating oGH between animals of this pedigree. There was a weak inverse relationship between the serum level of oGH and the extent of methylation of the transgene. In particular, mice exhibiting CpC together with CpG methylation were found to have very low levels of circulating oGH. Our results highlight the nature and complexity of epigenetic factors associated with transgene sequences which may ultimately influence expression of introduced genes in the mammalian genome.  相似文献   
2.
We have investigated the extent to which the assembly of the cytoplasmically synthesized subunits of the H+-ATPase can proceed in a mtDNA-less (rho°) strain of yeast, which is not capable of mitochondrial protein synthesis. Three of the membrane sector proteins of the yeast H+-ATPase are synthesized in the mitochondria, and it is important to determine whether the presence of these subunits is essential for the assembly of the imported subunits to the inner mitochondrial membrane. A monoclonal antibody against the cytoplasmically synthesized -subunit of the H+-ATPase was used to immunoprecipitate the assembled subunits of the enzyme complex. Our results indicate that the imported subunits of the H+-ATPase can be assembled in this mutant, into a defective complex which could be shown to be associated with the mitochondrial membrane by the analysis of the Arrhenius kinetics of the mutant mitochondrial ATPase activity.This paper is No. 61 in the seriesBiogenesis of Mitochondria. For paper No. 60, see Novitskiet al. (1984).  相似文献   
3.
4.
Mitochondria are one of the major sources of reactive oxygen species (ROS) in the cell. When exceeding the capacity of antioxidant mechanisms, ROS production may lead to different pathologies, such as ischemia-reperfusion injury, neurodegeneration, anemia and ageing. As a consequence of the endosymbiotic origin of mitochondria, eukaryotic cells have developed different transport mechanisms that coordinate mitochondrial function with other cellular compartments. Four mitochondrial ATP-binding cassette (ABC) transporters have been described to date in mammals: ABCB6, ABCB8, ABCB7 and ABCB10. ABCB10 is located in the inner mitochondrial membrane forming homodimers, with the ATP binding domain facing the mitochondrial matrix. ABCB10 expression is highly induced during erythroid differentiation and its overexpression increases hemoglobin synthesis in erythroid cells. However, ABCB10 is also expressed in nonerythroid tissues, suggesting a role not directly related to hemoglobin synthesis. Recent evidence points toward ABCB10 as an important player in the protection from oxidative stress in mammals. In this regard, ABCB10 is required for normal erythropoiesis and cardiac recovery after ischemia-reperfusion, processes intimately related to mitochondrial ROS generation. Here, we review the current knowledge on mitochondrial ABC transporters and ABCB10 and discuss the potential mechanisms by which ABCB10 and its transport activity may regulate oxidative stress. We discuss ABCB10 as a potential therapeutic target for diseases in which increased mitochondrial ROS production and oxidative stress play a major role.  相似文献   
5.
Testosterone supplementation increases muscle mass in older men but has not been shown to consistently improve physical function and activity. It has been hypothesized that physical exercise is required to induce the adaptations necessary for translation of testosterone-induced muscle mass gain into functional improvements. However, the effects of testosterone plus low intensity physical exercise training (T/PT) on functional performance and bioenergetics are unknown. In this pilot study, we tested the hypothesis that combined administration of T/PT would improve functional performance and bioenergetics in male mice late in life more than low-intensity physical training alone. 28-month old male mice were randomized to receive T/PT or vehicle plus physical training (V/PT) for 2 months. Compare to V/PT control, administration of T/PT was associated with improvements in muscle mass, grip strength, spontaneous physical movements, and respiratory activity. These changes were correlated with increased mitochondrial DNA copy number and expression of markers for mitochondrial biogenesis. Mice receiving T/PT also displayed increased expression of key elements for mitochondrial quality control, including markers for mitochondrial fission-and-fusion and mitophagy. Concurrently, mice receiving T/PT also displayed increased expression of markers for reduced tissue oxidative damage and improved muscle quality. Conclusion: Testosterone administered with low-intensity physical training improves grip strength, spontaneous movements, and respiratory activity. These functional improvements were associated with increased muscle mitochondrial biogenesis and improved mitochondrial quality control.  相似文献   
6.
Accumulation of depolarized mitochondria within beta-cells has been associated with oxidative damage and development of diabetes. To determine the source and fate of depolarized mitochondria, individual mitochondria were photolabeled and tracked through fusion and fission. Mitochondria were found to go through frequent cycles of fusion and fission in a 'kiss and run' pattern. Fission events often generated uneven daughter units: one daughter exhibited increased membrane potential (delta psi(m)) and a high probability of subsequent fusion, while the other had decreased membrane potential and a reduced probability for a fusion event. Together, this pattern generated a subpopulation of non-fusing mitochondria that were found to have reduced delta psi(m) and decreased levels of the fusion protein OPA1. Inhibition of the fission machinery through DRP1(K38A) or FIS1 RNAi decreased mitochondrial autophagy and resulted in the accumulation of oxidized mitochondrial proteins, reduced respiration and impaired insulin secretion. Pulse chase and arrest of autophagy at the pre-proteolysis stage reveal that before autophagy mitochondria lose delta psi(m) and OPA1, and that overexpression of OPA1 decreases mitochondrial autophagy. Together, these findings suggest that fission followed by selective fusion segregates dysfunctional mitochondria and permits their removal by autophagy.  相似文献   
7.
8.
The mitochondrial life cycle consists of frequent fusion and fission events. Ample experimental and clinical data demonstrate that inhibition of either fusion or fission results in deterioration of mitochondrial bioenergetics. While fusion may benefit mitochondrial function by allowing the spreading of metabolites, protein and DNA throughout the network, the functional benefit of fission is not as intuitive. Remarkably, studies that track individual mitochondria through fusion and fission found that the two events are paired and that fusion triggers fission. On average each mitochondrion would go though ~5 fusion:fission cycles every hour. Measurement of Deltapsi(m) during single fusion and fission events demonstrates that fission may yield uneven daughter mitochondria where the depolarized daughter is less likely to become involved in a subsequent fusion and is more likely to be targeted by autophagy. Based on these observations we propose a mechanism by which the integration of mitochondrial fusion, fission and autophagy forms a quality maintenance mechanism. According to this hypothesis pairs of fusion and fission allow for the reorganization and sequestration of damaged mitochondrial components into daughter mitochondria that are segregated from the networking pool and then becoming eliminated by autophagy.  相似文献   
9.
It is a desirable goal to stimulate fuel oxidation in adipocytes and shift the balance toward less fuel storage and more burning. To understand this regulatory process, respiration was measured in primary rat adipocytes, mitochondria, and fat‐fed mice. Maximum O2 consumption, in vitro, was determined with a chemical uncoupler of oxidative phosphorylation (carbonylcyanide p‐trifluoromethoxyphenylhydrazone (FCCP)). The adenosine triphosphate/adenosine diphosphate (ATP/ADP) ratio was measured by luminescence. Mitochondria were localized by confocal microscopy with MitoTracker Green and their membrane potential (ΔψM) measured using tetramethylrhodamine ethyl ester perchlorate (TMRE). The effect of N‐acetylcysteine (NAC) on respiration and body composition in vivo was assessed in mice. Addition of FCCP collapsed ΔψM and decreased the ATP/ADP ratio. However, we demonstrated the same rate of adipocyte O2 consumption in the absence or presence of fuels and FCCP. Respiration was only stimulated when reactive oxygen species (ROS) were scavenged by pyruvate or NAC: other fuels or fuel combinations had little effect. Importantly, the ROS scavenging role of pyruvate was not affected by rotenone, an inhibitor of mitochondrial complex I. In addition, mice that consumed NAC exhibited increased O2 consumption and decreased body fat in vivo. These studies suggest for the first time that adipocyte O2 consumption may be inhibited by ROS, because pyruvate and NAC stimulated respiration. ROS inhibition of O2 consumption may explain the difficulty to identify effective strategies to increase fat burning in adipocytes. Stimulating fuel oxidation in adipocytes by decreasing ROS may provide a novel means to shift the balance from fuel storage to fuel burning.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号