首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   5篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2018年   2篇
  2017年   5篇
  2016年   7篇
  2015年   5篇
  2014年   8篇
  2013年   11篇
  2012年   3篇
  2011年   6篇
  2010年   6篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   1篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
1.
2.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
3.
4.
Recent advances in next-generation sequencing techniques and the development of genomics resources for crop plants with large genomes allow the detection of a large number of single nucleotide polymorphisms (SNPs) and their use in a high-throughput manner. However, such large numbers of SNPs are on the one hand not needed in some plant breeding projects and on the other hand not affordable in some cases, raising the need for fast and low-cost innovative techniques for marker detection. In marker selection in plant breeding programs, cleaved amplified polymorphic sequence (CAPS) markers still play a significant role as a complement to other high-throughput methods for SNP genotyping. New methods focusing on the acceleration of CAPS-based genotyping are therefore highly desirable. The combination of the classical CAPS method and a M13-tailed primer multiplexing assay was used to develop an agarose-gel-free protocol for the analysis of SNPs via restriction enzyme digestion. PCR products were fluorescence-labeled with a universal M13 primer and subsequently digested with the appropriate restriction endonuclease. After mixing differently labeled products, they were detected in a capillary electrophoresis system. This method allowed the cost-effective genotyping of several SNPs in barley in a multiplexed manner at an overall low cost in a short period of time. This new method was efficiently combined with the simultaneous detection of simple sequence repeats in the same electrophoresis run, resulting in a procedure well suited for marker-based selection procedures, genotyping of mapping populations and the assay of genetic diversity.  相似文献   
5.
Abstract

Random amplified polymorphic DNAs (RAPDs) were used to study the genetic variation of Pyrenophora tritici-repentis isolates causing wheat tan spot. Two independent experiments were conducted in 2002 – 2003. In 2002, 40 isolates collected in Russia (Krasnodar region, Bashkiria), Germany, and the Czech Republic were studied and 35 unique RAPD genotypes were identified. Most of the genetic variation (72%) was observed within populations and 28% between them. In 2003, 69 new isolates from Russia (Dagestan, North Osetia, Bashkiria), Germany, and the Czech Republic were studied and 47 unique RAPD genotypes were identified. As in 2002, most of the genetic variation (75%) was observed within populations and 25% between them. Total gene diversity in each group ranged from 0.67 – 1.00 for 2002 and was 1.00 for 2003. The average gene diversity was estimated between 0.13 and 0.20 in 2002 and between 0.07 and 0.18 in 2003. A dendrogramme based on genetic distances between isolates illustrates that the variation is distributed on a small scale (0.3 – 4.0%). Estimated FST values and clustering of isolates on dendrogrammes suggest that groups of isolates from Bashkiria and groups of isolates from Dagestan and North Osetia are separated from others and may be considered as different geographical populations. No clear differentiation between isolates from other sites was revealed.  相似文献   
6.
Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.  相似文献   
7.
Irisin was first identified in muscle cells. We detected irisin immunoreactivity in various organs of the crested porcupine (Hystrix cristata). In the epidermis, irisin immunoreactivity was localized mainly in stratum basale, stratum spinosum and stratum granulosum layers; immunoreactivity was not observed in the stratum corneum. In the dermis, irisin was found in the external and internal root sheath, cortex and medulla of hair follicles, and in sebaceous glands. Irisin immunoreactivity was found in the neural retina and skeletal muscle fibers associated with the eye. The pineal and thyroid glands also exhibited irisin immunoreactivity.  相似文献   
8.
9.
Breeding for resistant cultivars is the only way to prevent high yield loss in barley caused by the soil-borne barley mild mosaic virus (BaMMV) complex. We have characterized the BaMMV resistance of barley cv. Chikurin Ibaraki 1. Doubled haploid lines were obtained from the F1 between the susceptible six-rowed winter barley cultivar, Plaisant, and Chikurin Ibaraki 1. Each line was tested for reaction to BaMMV by mechanical inoculation followed by DAS-ELISA. Of 44 microsatellites that covered the genome, 22 polymorphic markers were tested on one susceptible and one resistant bulk, each comprising 30 lines. Differential markers and additional microsatellite markers in the same region were then tested on the whole population. A bootstrap analysis was used to compute confidence intervals of distances and to test the orders of the resistance gene and the closest markers. A segregation of 84 resistant/98 susceptible lines fitted a 1:1 ratio (2=1.08, P=0.30), which corresponds to a single gene in this DH lines population. The resistance gene was flanked by two markers near the centromeric region of chromosome 6HS—Bmag0173, at 0.6±1.2 cM, and EBmac0874, at 5.8 ± 3.4 cM. We propose to name this new resistance gene rym15. This resistance gene and associated markers will increase the possibilities to breed efficiently for new cultivars resistant to the barley mosaic disease.Communicated by P. Langridge  相似文献   
10.
Recent declines in costs accelerated sequencing of many species with large genomes, including hexaploid wheat (Triticum aestivum L.). Although the draft sequence of bread wheat is known, it is still one of the major challenges to developlocus specific primers suitable to be used in marker assisted selection procedures, due to the high homology of the three genomes. In this study we describe an efficient approach for the development of locus specific primers comprising four steps, i.e. (i) identification of genomic and coding sequences (CDS) of candidate genes, (ii) intron- and exon-structure reconstruction, (iii) identification of wheat A, B and D sub-genome sequences and primer development based on sequence differences between the three sub-genomes, and (iv); testing of primers for functionality, correct size and localisation. This approach was applied to single, low and high copy genes involved in frost tolerance in wheat. In summary for 27 of these genes for which sequences were derived from Triticum aestivum, Triticum monococcum and Hordeum vulgare, a set of 119 primer pairs was developed and after testing on Nulli-tetrasomic (NT) lines, a set of 65 primer pairs (54.6%), corresponding to 19 candidate genes, turned out to be specific. Out of these a set of 35 fragments was selected for validation via Sanger''s amplicon re-sequencing. All fragments, with the exception of one, could be assigned to the original reference sequence. The approach presented here showed a much higher specificity in primer development in comparison to techniques used so far in bread wheat and can be applied to other polyploid species with a known draft sequence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号