首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   4篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  1997年   1篇
  1992年   1篇
  1983年   1篇
  1973年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
In immunocompetent individuals, non-typhoidal Salmonella serovars (NTS) are associated with gastroenteritis, however, there is currently an epidemic of NTS bloodstream infections in sub-Saharan Africa. Plasmodium falciparum malaria is an important risk factor for invasive NTS bloodstream in African children. Here we investigated whether a live, attenuated Salmonella vaccine could be protective in mice, in the setting of concurrent malaria. Surprisingly, mice acutely infected with the nonlethal malaria parasite Plasmodium yoelii 17XNL exhibited a profound loss of protective immunity to NTS, but vaccine-mediated protection was restored after resolution of malaria. Absence of protective immunity during acute malaria correlated with maintenance of antibodies to NTS, but a marked reduction in effector capability of Salmonella-specific CD4 and CD8 T cells. Further, increased expression of the inhibitory molecule PD1 was identified on memory CD4 T cells induced by vaccination. Blockade of IL-10 restored protection against S. Typhimurium, without restoring CD4 T cell effector function. Simultaneous blockade of CTLA-4, LAG3, and PDL1 restored IFN-γ production by vaccine-induced memory CD4 T cells but was not sufficient to restore protection. Together, these data demonstrate that malaria parasite infection induces a temporary loss of an established adaptive immune response via multiple mechanisms, and suggest that in the setting of acute malaria, protection against NTS mediated by live vaccines may be interrupted.  相似文献   
2.
Non-typhoidal Salmonella serotypes (NTS) cause a self-limited gastroenteritis in immunocompetent individuals, while children with severe Plasmodium falciparum malaria can develop a life-threatening disseminated infection. This co-infection is a major source of child mortality in sub-Saharan Africa. However, the mechanisms by which malaria contributes to increased risk of NTS bacteremia are incompletely understood. Here, we report that in a mouse co-infection model, malaria parasite infection blunts inflammatory responses to NTS, leading to decreased inflammatory pathology and increased systemic bacterial colonization. Blunting of NTS-induced inflammatory responses required induction of IL-10 by the parasites. In the absence of malaria parasite infection, administration of recombinant IL-10 together with induction of anemia had an additive effect on systemic bacterial colonization. Mice that were conditionally deficient for either myeloid cell IL-10 production or myeloid cell expression of IL-10 receptor were better able to control systemic Salmonella infection, suggesting that phagocytic cells are both producers and targets of malaria parasite-induced IL-10. Thus, IL-10 produced during the immune response to malaria increases susceptibility to disseminated NTS infection by suppressing the ability of myeloid cells, most likely macrophages, to control bacterial infection.  相似文献   
3.
4.

Background

CPD1 (also known as ANP32-E) belongs to a family of evolutionarily conserved acidic proteins with leucine rich repeats implicated in a variety of cellular processes regulating gene expression, vesicular trafficking, intracellular signaling and apoptosis. Because of its spatiotemporal expression pattern, CPD1 has been proposed to play an important role in brain morphogenesis and synaptic development.

Methodology/Principal Findings

We have generated CPD1 knock-out mice that we have subsequently characterized. These mice are viable and fertile. However, they display a subtle neurological clasping phenotype and mild motor deficits.

Conclusions/Significance

CPD1 is not essential for normal development; however, it appears to play a role in the regulation of fine motor functions. The minimal phenotype suggests compensatory biological mechanisms.  相似文献   
5.
We had previously described the leucine-rich acidic nuclear protein (LANP) as a candidate mediator of toxicity in the polyglutamine disease, spinocerebellar ataxia type 1 (SCA1). This was based on the observation that LANP binds ataxin-1, the protein involved in this disease, in a glutamine repeat-dependent manner. Furthermore, LANP is expressed abundantly in purkinje cells, the primary site of ataxin-1 pathology. Here we focused our efforts on understanding the neuronal properties of LANP. In undifferentiated neuronal cells LANP is predominantly a nuclear protein, requiring a bona fide nuclear localization signal to be imported into the nucleus. LANP translocates from the nucleus to the cytoplasm during the process of neuritogenesis, interacts with the light chain of the microtubule-associated protein 1B (MAP1B), and modulates the effects of MAP1B on neurite extension. LANP thus could play a key role in neuronal development and/or neurodegeneration by its interactions with microtubule associated proteins.  相似文献   
6.
7.
The contribution of endogenous NK cells and cytokines to virus-induced liver pathology was evaluated during murine cytomegalovirus infections of mice. In immunocompetent C57BL/6 mice, the virus induced a self-limited liver disease characterized by hepatitis, with focal inflammation, and large grossly visible subcapsular necrotic foci. The inflammatory foci were most numerous and contained the greatest number of cells 3 days after infection; they colocalized with areas of viral antigen expression. The largest number of necrotic foci was found 2 days after infection. Overall hepatic damage, assessed as increased expression of liver enzymes in serum, accompanied the development of inflammatory and necrotic foci. Experiments with neutralizing antibodies demonstrated that although virus-induced tumor necrosis factor (TNF) can have antiviral effects, it also mediated significant liver pathology. TNF was required for development of hepatic necrotic foci and increased levels of liver enzymes in serum but not for increased numbers of inflammatory foci. The necrotic foci and liver enzyme indications of pathology occurred independently of NK and T cells, because mice rendered NK-cell deficient by treatment with antibodies, T- and B-cell-deficient Rag-/- mice, and NK- and T-cell-deficient E26 mice all manifested both parameters of disease. Development of necrotic foci and maximally increased levels of liver enzymes in serum also were TNF dependent in NK-cell-deficient mice. Moreover, in the immunodeficient E26 mice, virus-induced liver disease was progressive, with eventual death of the host, and neutralization of TNF significantly increased longevity. These results establish conditions separating hepatitis from significant liver damage and demonstrate a cytokine-mediated component to viral pathogenesis.  相似文献   
8.
Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains.  相似文献   
9.
The "triplet repeat" neurodegenerative diseases are linked by a common mode of pathogenicity, wherein a polyglutamine expansion within the relevant disease-causing protein induces toxicity. Although details underlying pathogenesis are largely unknown, protein chaperones appear to be effective suppressors of toxicity in various experimental models. Understanding the protective role of chaperones might not only help us to understand the biology of polyglutamine toxicity, but also, and perhaps more importantly, inspire the design of novel therapeutic strategies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号