首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   4篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
2.
3.
β-lactams inhibit peptidoglycan polymerization by acting as suicide substrates of essential d,d-transpeptidases. Bypass of these enzymes by unrelated l,d-transpeptidases results in β-lactam resistance, although carbapenems remain unexpectedly active. To gain insight into carbapenem specificity of l,d-transpeptidases (Ldts), we solved the nuclear magnetic resonance (NMR) structures of apo and imipenem-acylated Bacillus subtilis Ldt and show that the cysteine nucleophile is present as a neutral imidazole-sulfhydryl pair in the substrate-free enzyme. NMR relaxation dispersion does not reveal any preexisting conformational exchange in the apoenzyme, and change in flexibility is not observed upon noncovalent binding of β-lactams (K(D) > 37.5 mM). In contrast, covalent modification of active cysteine by both carbapenems and 2-nitro-5-thiobenzoate induces backbone flexibility that does not result from disruption of the imidazole-sulfhydryl proton interaction or steric hindrance. The chemical step of the reaction determines enzyme specificity since no differences in drug affinity were observed.  相似文献   
4.
5.
6.
The mechanism for passive cochlear tuning remains unsettled. Early models considered the organ of Corti complex (OCC) as a succession of spring-mass resonators. Later, traveling wave models showed that passive tuning could arise through the interaction of cochlear fluid mass and OCC stiffness without local resonators. However, including enough OCC mass to produce local resonance enhanced the tuning by slowing and thereby growing the traveling wave as it approached its resonant segment. To decide whether the OCC mass plays a role in tuning, the frequency variation of the wavenumber of the cochlear traveling wave was measured (in vivo, passive cochleae) and compared to theoretical predictions. The experimental wavenumber was found by taking the phase difference of basilar membrane motion between two longitudinally spaced locations and dividing by the distance between them. The theoretical wavenumber was a solution of the dispersion relation of a three-dimensional cochlear model with OCC mass and stiffness as the free parameters. The experimental data were only well fit by a model that included OCC mass. However, as the measurement position moved from a best-frequency place of 40 to 12 kHz, the role of mass was diminished. The notion of local resonance seems to only apply in the very high-frequency region of the cochlea.  相似文献   
7.
Legionella pneumophila exhibits surface translocation when it is grown on a buffered charcoal yeast extract (BCYE) containing 0.5 to 1.0% agar. After 7 to 22 days of incubation, spreading legionellae appear in an amorphous, lobed pattern that is most manifest at 25 to 30°C. All nine L. pneumophila strains examined displayed the phenotype. Surface translocation was also exhibited by some, but not all, other Legionella species examined. L. pneumophila mutants that were lacking flagella and/or type IV pili behaved as the wild type did when plated on low-percentage agar, indicating that the surface translocation is not swarming or twitching motility. A translucent film was visible atop the BCYE agar, advancing ahead of the spreading legionellae. Based on its abilities to disperse water droplets and to promote the spreading of heterologous bacteria, the film appeared to manipulate surface tension and, as such, acted like a surfactant. Indeed, a sample obtained from the film rapidly dispersed when it was spotted onto a plastic surface. L. pneumophila type II secretion (Lsp) mutants, but not their complemented derivatives, were defective for both surface translocation and film production. In contrast, mutants defective for type IV secretion exhibited normal surface translocation. When lsp mutants were spotted onto film produced by the wild type, they were able to spread, suggesting that type II secretion promotes the elaboration of the Legionella surfactant. Together, these data indicate that L. pneumophila exhibits a form of surface translocation that is most akin to “sliding motility” and uniquely dependent upon type II secretion.The genus Legionella was established in 1977, following the isolation of Legionella pneumophila from patients with a form of pneumonia now known as Legionnaires'' disease (33). Today, L. pneumophila is recognized as a common cause of both community-acquired and nosocomial pneumonia (84). Legionellosis occurs sporadically and in large outbreaks, with the largest outbreak occurring as recently as 2003 and encompassing 800 suspected and 449 confirmed cases (43). L. pneumophila is especially pathogenic for the elderly and the immunocompromised, large and growing segments of the population (39, 84), and recent studies have been highlighting the growing significance of travel-associated Legionnaires'' disease (107). L. pneumophila is a gram-negative, gammaproteobacterium that is widespread in natural and manufactured water systems (22, 39, 93). Infection occurs after the inhalation of Legionella-contaminated water droplets originating from a wide variety of aerosol-generating devices (39). Alarmingly, outbreaks can occur following the airborne spread of L. pneumophila over distances of >10 km from cooling towers or scrubbers (86). Within its aquatic habitats, L. pneumophila survives over a wide temperature range and grows on surfaces, in biofilms, and as an intracellular parasite of protozoa (9, 39, 110). Within the mammalian lung, the organism has the ability to attach to and invade macrophages and epithelia (27, 106, 113). Among the processes that promote L. pneumophila growth in both the environment and the mammalian lung are Lsp type II protein secretion, Dot/Icm type IVB protein secretion, and Lvh type IVA protein secretion (5, 25, 31, 106). Other key surface features of L. pneumophila are polar flagella that promote swimming motility and type IV pili that help mediate adherence (53, 103, 113). In addition to exporting proteins onto its surface into the extracellular milieu, and/or into host cells, L. pneumophila also secretes a siderophore and pyomelanin pigment that help mediate iron assimilation (23). We now report that L. pneumophila has the ability to translocate or spread across an agar surface. This new form of Legionella “motility” did not require the action of flagella, pili, or type IV secretion but was associated with the export of a surfactantlike material and an intact type II secretion system.  相似文献   
8.
Evolutionary convergence of color pattern in mimetic species is tightly linked with the evolution of chemical defenses. Yet, the evolutionary forces involved in natural variations of chemical defenses in aposematic species are still understudied. Herein, we focus on the evolution of chemical defenses in the butterfly tribe Heliconiini. These neotropical butterflies contain large concentrations of cyanogenic glucosides, cyanide‐releasing compounds acting as predator deterrent. These compounds are either de novo synthesized or sequestered from their Passiflora host plant, so that their concentrations may depend on host plant specialization and host plant availability. We sampled 375 wild Heliconiini butterflies across Central and South America, covering 43% species of this clade, and quantify individual variations in the different CGs using liquid chromatography coupled with tandem mass spectrometry. We detected new compounds and important variations in chemical defenses both within and among species. Based on the most recent and well‐studied phylogeny of Heliconiini, we show that ecological factors such as mimetic interactions and host plant specialization have a significant association with chemical profiles, but these effects are largely explained by phylogenetic relationships. Our results therefore suggest that shared ancestries largely contribute to chemical defense variation, pointing out at the interaction between historical and ecological factors in the evolution of Müllerian mimicry.  相似文献   
9.
Legionella pneumophila, the agent of Legionnaires' disease, is an intracellular parasite of aquatic amoebae and human macrophages. A key factor for L. pneumophila in intracellular infection is its type II protein secretion system (Lsp). In order to more completely define Lsp output, we recently performed a proteomic analysis of culture supernatants. Based upon the predictions of that analysis, we found that L. pneumophila secretes two distinct aminopeptidase activities encoded by the genes lapA and lapB. Whereas lapA conferred activity against leucine, phenylalanine, and tyrosine aminopeptides, lapB was linked to the cleavage of lysine- and arginine-containing substrates. To assess the role of secreted aminopeptidases in intracellular infection, we examined the relative abilities of lapA and lapB mutants to infect human U937 cell macrophages as well as Hartmannella vermiformis and Acanthamoeba castellanii amoebae. Although these experiments identified a dispensable role for LapA and LapB, they uncovered a previously unrecognized role for the type II-dependent ProA (MspA) metalloprotease. Whereas proA mutants were not defective for macrophage or A. castellanii infection, they (but not their complemented derivatives) were impaired for growth upon coculture with H. vermiformis. Thus, ProA represents the first type II effector implicated in an intracellular infection event. Furthermore, proA represents an L. pneumophila gene that shows differential importance among protozoan infection models, suggesting that the legionellae might have evolved some of its factors to especially target certain of their protozoan hosts.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号