首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   4篇
  2017年   1篇
  2016年   3篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
In this study we describe the biochemical features of the Toxoplasma gondii tachyzoite surface glycoprotein, gp23, demonstrating that it is attached to the parasite membrane by a glycosyl-phosphatidyl inositol anchor. Gp23 was metabolically labeled with tritiated palmitate, myristate, ethanolamine, inositol, glucosamine, mannose and galactose, as expected for a GPI-anchor structure. Gp23 was released from the surface of living parasites after treatment with phosphatidyl inositol-specific phospholipase C (PI-PLC) and the resulting water-soluble protein was immunoprecipitated with a monoclonal antibody specific for gp23. The GPIcore glycan was generated after aqueous-HF dephosphorylation followed by nitrous acid deamination and its carbohydrate structure was analyzed using selective exo- and endoglycosidase treatments. Finally, the phosphatidylinositol moiety of gp23 was characterized using PI-PLC and phospholipase A2 (PLA2) digestions. Our cumulative data suggest that gp23 of T gondii tachyzoites contains a modified GPI-backbone similar to the mammalian Thy-1 anchor, consisting of a conserved core structure (ethanolaminePO4-6-Manαl-2-Manαl-6-Manαl-4-GIcNαl-6-PI) bearing β-linked N-acetylgalactosamine residue(s).  相似文献   
2.
The chicken major histocompatibility complex (MHC) is located on the microchromosome 16 and is described as the most variable region in the genome. The genes of the MHC play a central role in the immune system. Particularly, genes encoding proteins involved in the antigen presentation to T cells. Therefore, describing the genetic polymorphism of this region is crucial in understanding host–pathogen interactions. The tandem repeat LEI0258 is located within the core area of the B region of the chicken MHC (MHC-B region) and its genotypes correlate with serology. This marker was used to provide a picture of the worldwide diversity of the chicken MHC-B region and to categorize chicken MHC haplotypes. More than 1,600 animals from 80 different populations or lines of chickens from Africa, Asia, and Europe, including wild fowl species, were genotyped at the LEI0258 locus. Fifty novel alleles were described after sequencing. The resulting 79 alleles were classified into 12 clusters, based on the SNPs and indels found within the sequences flanking the repeats. Furthermore, hypotheses were formulated on the evolutionary dynamics of the region. This study constitutes the largest variability report for the chicken MHC and establishes a framework for future diversity or association studies.  相似文献   
3.
We have characterized a Kazal family serine protease inhibitor, Toxoplasma gondii protease inhibitor 1 (TgPI-1), in the obligate intracellular parasite Toxoplasma gondii. TgPI-1 contains four inhibitor domains predicted to inhibit trypsin, chymotrypsin, and elastase. Antibodies against recombinant TgPI-1 detect two polypeptides, of 43 and 41 kDa, designated TgPI-1(43) and TgPI-1(41), in tachyzoites, bradyzoites, and sporozoites. TgPI-1(43) and TgPI-1(41) are secreted constitutively from dense granules into the excreted/secreted antigen fraction as well as the parasitophorous vacuole that T. gondii occupies during intracellular replication. Recombinant TgPI-1 inhibits trypsin, chymotrypsin, pancreatic elastase, and neutrophil elastase. Immunoprecipitation studies with anti-rTgPI-1 antibodies reveal that recombinant TgPI-1 forms a complex with trypsin that is dependent on interactions with the active site of the protease. TgPI-1 is the first anti-trypsin/chymotrypsin inhibitor to be identified in bradyzoites and sporozoites, stages of the parasite that would be exposed to proteolytic enzymes in the digestive tract of the host.  相似文献   
4.
Toxoplasma gondii motility, which is essential for host cell entry, migration through host tissues, and invasion, is a unique form of actin-dependent gliding. It is powered by a motor complex mainly composed of myosin heavy chain A, myosin light chain 1, gliding associated proteins GAP45, and GAP50, the only integral membrane anchor so far described. In the present study, we have combined glycomic and proteomic approaches to demonstrate that all three potential N-glycosylated sites of GAP50 are occupied by unusual N-glycan structures that are rarely found on mature mammalian glycoproteins. Using site-directed mutagenesis, we show that N-glycosylation is a prerequisite for GAP50 transport from the endoplasmic reticulum to the Golgi apparatus and for its subsequent delivery into the inner complex membrane. Assembly of key partners into the gliding complex, and parasite motility are severely impaired in the unglycosylated GAP50 mutants. Furthermore, comparative affinity purification using N-glycosylated and unglycosylated GAP50 as bait identified three novel hypothetical proteins including the recently described gliding associated protein GAP40, and we demonstrate that N-glycans are required for efficient binding to gliding partners. Collectively, these results provide the first detailed analyses of T. gondii N-glycosylation functions that are vital for parasite motility and host cell entry.  相似文献   
5.
Obligate intracellular Apicomplexa parasites share a unique invasion mechanism involving a tight interaction between the host cell and the parasite surfaces called the moving junction (MJ). The MJ, which is the anchoring structure for the invasion process, is formed by secretion of a macromolecular complex (RON2/4/5/8), derived from secretory organelles called rhoptries, into the host cell membrane. AMA1, a protein secreted from micronemes and associated with the parasite surface during invasion, has been shown in vitro to bind the MJ complex through a direct association with RON2. Here we show that RON2 is inserted as an integral membrane protein in the host cell and, using several interaction assays with native or recombinant proteins, we define the region that binds AMA1. Our studies were performed both in Toxoplasma gondii and Plasmodium falciparum and although AMA1 and RON2 proteins have diverged between Apicomplexa species, we show an intra-species conservation of their interaction. More importantly, invasion inhibition assays using recombinant proteins demonstrate that the RON2-AMA1 interaction is crucial for both T. gondii and P. falciparum entry into their host cells. This work provides the first evidence that AMA1 uses the rhoptry neck protein RON2 as a receptor to promote invasion by Apicomplexa parasites.  相似文献   
6.
The use of impedance-based label-free technology applied to drug discovery is nowadays receiving more and more attention. Indeed, such a simple and noninvasive assay that interferes minimally with cell morphology and function allows one to perform kinetic measurements and to obtain information on proliferation, migration, cytotoxicity, and receptor-mediated signaling. The objective of the study was to further assess the usefulness of a real-time cell analyzer (RTCA) platform based on impedance in the context of quality control and data reproducibility. The data indicate that this technology is useful to determine the best coating and cellular density conditions for different adherent cellular models including hepatocytes, cardiomyocytes, fibroblasts, and hybrid neuroblastoma/neuronal cells. Based on 31 independent experiments, the reproducibility of cell index data generated from HepG2 cells exposed to DMSO and to Triton X-100 was satisfactory, with a coefficient of variation close to 10%. Cell index data were also well reproduced when cardiomyocytes and fibroblasts were exposed to 21 compounds three times (correlation >0.91, p < 0.0001). The data also show that a cell index decrease is not always associated with cytotoxicity effects and that there are some confounding factors that can affect the analysis. Finally, another drawback is that the correlation analysis between cellular impedance measurements and classical toxicity endpoints has been performed on a limited number of compounds. Overall, despite some limitations, the RTCA technology appears to be a powerful and reliable tool in drug discovery because of the reasonable throughput, rapid and efficient performance, technical optimization, and cell quality control.  相似文献   
7.
Single-celled apicomplexan parasites are known to cause major diseases in humans and animals including malaria, toxoplasmosis, and coccidiosis. The presence of apicoplasts with the remnant of a plastid-like DNA argues that these parasites evolved from photosynthetic ancestors possibly related to the dinoflagellates. Toxoplasma gondii displays amylopectin-like polymers within the cytoplasm of the dormant brain cysts. Here we report a detailed structural and comparative analysis of the Toxoplasma gondii, green alga Chlamydomonas reinhardtii, and dinoflagellate Crypthecodinium cohnii storage polysaccharides. We show Toxoplasma gondii amylopectin to be similar to the semicrystalline floridean starch accumulated by red algae. Unlike green plants or algae, the nuclear DNA sequences as well as biochemical and phylogenetic analysis argue that the Toxoplasma gondii amylopectin pathway has evolved from a totally different UDP-glucose-based metabolism similar to that of the floridean starch accumulating red alga Cyanidioschyzon merolae and, to a lesser extent, to those of glycogen storing animals or fungi. In both red algae and apicomplexan parasites, isoamylase and glucan–water dikinase sequences are proposed to explain the appearance of semicrystalline starch-like polymers. Our results have built a case for the separate evolution of semicrystalline storage polysaccharides upon acquisition of photosynthesis in eukaryotes.This article contains online-only supplementary material.Reviewing Editor:Dr. Patrick Keeling  相似文献   
8.
The protein called 'suppressor of the dis2 mutant (sds22+)' is an essential regulator of cell division in fission and budding yeasts, where its deletion causes mitotic arrest. Its role in cell cycle control appears to be mediated through the activation of protein phosphatase type 1 (PP1) in Schizosaccharomyces pombe. We have identified the Plasmodium falciparum Sds22 orthologue, which we designated PfLRR1 as it belongs to the leucine-rich repeat protein family. We showed by glutathione-S-transferase pull-down assay that the PfLRR1 gene product interacts with PfPP1, that the PfLRR1-PfPP1 complex is present in parasite extracts and that PfLRR1 inhibits PfPP1 activity. Functional studies in Xenopus oocytes revealed that PfLRR1 interacted with endogenous PP1 and overcame the G2/M cell cycle checkpoint by promoting progression to germinal vesicle breakdown (GVBD). Confirmatory results showing the appearance of GVBD were observed when oocytes were treated with anti-PP1 antibodies or okadaic acid. Taken together, these observations suggest that PfLRR1 can regulate the cell cycle by binding to PP1 and regulating its activity.  相似文献   
9.
Gissot M  Walker R  Delhaye S  Huot L  Hot D  Tomavo S 《PloS one》2012,7(3):e32671

Background

Apicomplexan parasites are responsible for some of the most deadly parasitic diseases afflicting humans, including malaria and toxoplasmosis. These obligate intracellular parasites exhibit a complex life cycle and a coordinated cell cycle-dependant expression program. Their cell division is a coordinated multistep process. How this complex mechanism is organised remains poorly understood.

Methods and Findings

In this study, we provide evidence for a link between heterochromatin, cell division and the compartmentalisation of the nucleus in Toxoplasma gondii. We characterised a T. gondii chromodomain containing protein (named TgChromo1) that specifically binds to heterochromatin. Using ChIP-on-chip on a genome-wide scale, we report TgChromo1 enrichment at the peri-centromeric chromatin. In addition, we demonstrate that TgChromo1 is cell-cycle regulated and co-localised with markers of the centrocone. Through the loci-specific FISH technique for T. gondii, we confirmed that TgChromo1 occupies the same nuclear localisation as the peri-centromeric sequences.

Conclusion

We propose that TgChromo1 may play a role in the sequestration of chromosomes at the nuclear periphery and in the process of T. gondii cell division.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号