首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2010年   1篇
  2007年   2篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有10条查询结果,搜索用时 218 毫秒
1
1.
Moringa oliferia seed pod was modified using orthophosphoric acid (H3PO4) and used as adsorbent for sequestering Rhodamine B (Rh-B) dye from aqueous solution. The acid-modified adsorbent (MOSPAC) was characterized using Scanning Electron microscopy (SEM), Fourier Transform Infra Red (FTIR), Energy Dispersive X-ray (EDX), pH point of zero charge (pHpzc) and Boehm Titration (BT) techniques, respectively. Operational parameters such as contact time, initial dye concentration, adsorbent dosage, pH and solution temperature were studied in batch process. Optimum dye adsorption was observed at pH 3.01. Equilibrium adsorption data was tested data using four different isotherm models: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich. Langmuir isotherm model fitted most with maximum monolayer adsorption capacity of 1250 mg g–1. Pseudo-second-order kinetic model provided the best correlation for the experimental data. Thermodynamic study showed that the process is endothermic, spontaneous and feasible. MOSPAC is an effective adsorbent for the removal of RhB dye from aqueous solutions.  相似文献   
2.
The objective of the present work was to evaluate the toxic effects of cobalt chloride, a potent oxidative stress-inducing chemical, at 650 ppm in rats and the protective effect of quercetin and/or vitamin C against the cobalt chloride-induced toxicity. Thirty rats were randomly selected, and assigned to one of five groups: control, cobalt chloride, cobalt chloride + quercetin, cobalt chloride + vitamin C and cobalt chloride + quercetin + vitamin C. The exposure of rats to cobalt chloride led to a significant increase (p < 0.05) in malondialdehyde (MDA) and hydrogen peroxide (H2O2) generated, but decreased nitric oxide (NO) bioavailability. Also, significant (p < 0.05) reductions were observed in the activity of glutathione peroxidase (GPx) and reduced glutathione (GSH) content in the cardiac and renal tissues. Treatment with quercetin and vitamin C reversed the effect of cobalt chloride on MDA, H2O2 and NO, more potently than with either of the two antioxidants, and increased the antioxidant defence system. Further, treatment of rats with quercetin and vitamin C in combination resulted in significant (p < 0.05) decreases in the systolic, diastolic, and mean arterial blood pressure of rats, relative to those exposed to cobalt chloride alone. Immunohistochemical studies revealed a greater expression of nuclear factor kappa beta (NF-kB) in the cobalt chloride group compared with the control- and antioxidants-treated rats. The results of this study suggest a protective role for quercetin and vitamin C in the amelioration of the toxic mechanisms leading to cobalt chloride-induced hypertension and its associated cardiac and renal complications in rats.  相似文献   
3.
Plant pathogens pose a significant threat to the food industry and food security accounting for 10–40% crop losses annually on a global scale. Economic losses from plant diseases are estimated at $300B for major food crops and are associated with reduced food availability and accessibility and also high food costs. Although strategies exist to reduce the impact of diseases in plants, many of these introduce harmful chemicals to our food chain. Therefore, it is important to understand and utilize plants' immune systems to control plant pathogens to enable more sustainable agriculture. Lipids are core components of cell membranes and as such are part of the first line of defense against pathogen attack. Recent developments in omics technologies have advanced our understanding of how plant membrane lipid biosynthesis, remodelling and/or signalling modulate plant responses to infection. Currently, there is limited information available in the scientific literature concerning lipid signalling targets and their biochemical and physiological consequences in response to plant pathogens. This review focusses on the functions of membrane lipid derivatives and their involvement in plant responses to pathogens as biotic stressors. We describe major plant defense systems including systemic‐acquired resistance, basal resistance, hypersensitivity and the gene‐for‐gene concept in this context.  相似文献   
4.
Intestinal helminths and schistosomiasis among school children were investigated in an urban and some rural communities of Ogun State, southwest Nigeria. Fecal samples of 1,059 subjects (524 males, 535 females) aged 3-18 years were examined using direct smear and brine concentration methods between June 2005 and November 2006. The pooled prevalence of infection was 66.2%. Ascaris lumbricoides showed the highest prevalence (53.4%) (P < 0.001) followed by hookworms (17.8%), Trichuris trichiura (10.4%), Taenia sp. (9.6%), Schistosoma mansoni (2.3%), Strongyloides stercoralis (0.7%), Schistosoma haematobium (0.6%), and Enterobius vermicularis (0.3%). The prevalences of A. lumbricoides, hookworms, Taenia sp., S. mansoni, and S. stercoralis in the urban centre were similar (P > 0.05) to those in the rural communities. The fertile and infertile egg ratios of A. lumbricoides in the urban centre and the rural communities were 13: 1 and 3.7: 1, respectively. Each helminth had similar prevalences among both genders (P > 0.05). The prevalence of A. lumbricoides increased significantly with age (P < 0.001). The commonest double infections were Ascaris and hookworms, while the commonest triple infections were Ascaris, hookworms, and Trichuris. The study demonstrates the need for urgent intervention programmes against intestinal helminthiases and schistosomiasis in the study area.  相似文献   
5.
6.
The present study was undertaken to investigate the effect of vitamin C treatment on blood pressure and vascular reactivity in salt-induced hypertension. Male Sprague-Dawley rats were fed a normal rat diet, a high-sodium (8% NaCl) diet, a normal rat diet plus vitamin C treament (100 mg x kg(-1) x day(-1)), or a high-sodium diet plus vitamin C treatment for 6 weeks. Salt loading significantly increased blood pressure, which was attenuated by vitamin C treatment. Aortic rings from the different groups were suspended for isometric-tension recording. The contractile response to noradrenaline was significantly increased in the salt-loaded rats. Vitamin C reduced the sensitivity of aortic rings to noradrenaline in rats on normal and high-sodium diets. In noradrenaline-precontracted rings, the relaxation response to acetylcholine, which was attenuated in the salt-loaded rats, was restored by vitamin C treatment. Pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME) abolished the enhanced response to acetylcholine caused by vitamin C. The results suggest that the antihypertensive effect of vitamin C is associated with a reduction in vascular sensitivity to noradrenaline and enhancement of endothelium-dependent relaxation due to increased nitric oxide bioavailability.  相似文献   
7.
Cardiac autonomic dysfunction is common in heart disease with or without congestive heart failure, and can cause sudden cardiac death. However, cardiac autonomic abnormalities in non-ischemic (hypertensive) heart failure, which is prevalent in Black Africans is poorly documented. We conducted a cross-sectional study of 32 patients with congestive heart failure, mostly secondary to hypertension (aged 52 +/- 15 years, with ejection fraction of 0.38 +/- 11) and 30 age- and sex-matched healthy volunteers (aged 51 +/- 11 years, 14 males/16 females). Cardiac autonomic function was assessed by the Valsalva's maneuver, respiratory sinus arrhythmia (for cardiac vagal tone) and the pressor and chronotropic changes following forearm isometric handgrip exercise and the assumption of upright posture (tests of sympathetic function). The exercise tolerance of the cardiac patients was assessed by the distance covered during 6 min of walking. The Valsalva ratio was significantly lower in chronic heart failure, 1.10 +/- 0.08 compared to the healthy controls 1.47 +/- 0.20 (p<0.001). Specifically, the phase IV bradycardia in heart failure, was significantly attenuated to 650 +/- 121 msec compared to the value of 935 +/- 101 msec in healthy controls (p<0.001). The phase 11 Valsalva tachycardia did not differ between the patients and controls. The respiratory sinus arrhythmia was also significantly reduced in chronic heart failure (p<0.05) compared to controls. Treatment of the heart failure patients with enalapril-digoxin and diuretics by 4 weeks, resulted in a reversal of the autonomic abnormalities. The phase IV bradycardia increased significantly to 798 +/- 164 msec (p<0.01) and the Valsalva ratio to 1.35 +/- 0.25 (p<0.01) and the respiratory sinus arrhythmia increased toward normal. There was close positive correlation between the Valsalva's ratio and the 6 min self paced distance covered (r = 0.44, p = 0.03 ANOVA), and a weak inverse correlation to cardiac size and cardiothoracic ratio (r = -0.31, p = 0.09). This study demonstrates cardiac autonomic dysfunction (especially reduced vagal tone) in Black Nigerians with mainly non-ischemic congestive heart failure. The parasympathetic dysfunction significantly correlates with severity of heart failure. Current treatment reverses autonomic dysfunction to values seen in healthy age matched controls, mainly through augmentation of cardiac parasympathetic activity.  相似文献   
8.
Experimental hypertension studies are few in the hooded (Aguti) rat. The present study was designed to investigate the usefulness of this rat strain for experimental hypertension studies and to test the hypothesis that the hypertension may be associated with a diminution of endothelium dependent and independent relaxations. Hypertension was induced in inbred hooded rats (n=8 each) by administering 8% salt in the diet and /or 100 mg/kg/day Nomega-nitro-L-arginine-methyl-ester (L-NAME) in the drinking water for six and/or four weeks respectively. The rats were anaesthetized using a 25% urethane and 1% chloralose mixture given intraperitoneally at a dose of 5 mg/kg. Their blood pressure was measured invasively. Thereafter, relaxations of rat aortic preparations to acetylcholine, histamine and sodium nitroprusside (SNP) were assessed using standard organ bath conditions. Probabiliity level of 0.05 was taken as statistically significant. The mean arterial pressure (MAP;mm Hg) rose significantly in all test groups (Salt: 148.3 +/- 4.6; L-NAME: 181.7 +/-8.3; Salt+L-NAME:154.9 +/-8.7) compared with control (94.2 +/-6.8; [P < 0.05]. The MAP was significantly [P < 0.05] higher in the L-NAME group than in all the other groups. The heart rate fell significantly in the salt + L-NAME group compared to control [P <0.05].The IC50 of acetylcholine in aortic rings from L-NAME rats (7.9 x 10(-1) +/- 6.0 x 10(-3)) was significantly higher than in rings from control (9.4 x 10(-8) +/- 2.8 x 10(-8)), salt (7.8 x 10(-7) +/- 4.7 x 10(-7)) and salt + L-NAME (3.3 x 10 (-7) +/- 2.1 x 10(-7)) rats [P < 0.05]. The IC50 of histamine and SNP in the rings from the test groups of rats showed no significant difference from control. Also, endothelium dependent and independent relaxations were preserved in the various forms of hypertension studied except in chronic NOS inhibition where the former was attenuated in response to acetylcholine.  相似文献   
9.
Mutations in the human gene ALMS1 cause Alström syndrome, a rare progressive condition characterized by neurosensory degeneration and metabolic defects. ALMS1 protein localizes to the centrosome and has been implicated in the assembly and/or maintenance of primary cilia; however its precise function, distribution within the centrosome, and mechanism of centrosomal recruitment are unknown. The C-terminus of ALMS1 contains a region with similarity to the uncharacterized human protein C10orf90, termed the ALMS motif. Here, we show that a third human protein, the candidate centrosomal protein KIAA1731, contains an ALMS motif and that exogenously expressed KIAA1731 and C10orf90 localize to the centrosome. However, based on deletion analysis of ALMS1, the ALMS motif appears unlikely to be critical for centrosomal targeting. RNAi analyses suggest that C10orf90 and KIAA1731 have roles in primary cilium assembly and centriole formation/stability, respectively. We also show that ALMS1 localizes specifically to the proximal ends of centrioles and basal bodies, where it colocalizes with the centrosome cohesion protein C-Nap1. RNAi analysis reveals markedly diminished centrosomal levels of C-Nap1 and compromised cohesion of parental centrioles in ALMS1-depleted cells. In summary, these data suggest centrosomal functions for C10orf90 and KIAA1731 and new centriole-related functions for ALMS1.  相似文献   
10.
Root membrane lipids are important biomolecules determining plant's ability to adapt to different growing environmental or climatic conditions. Herein, we demonstrate the potential use of root membrane lipids as biomarkers to discriminate silage-corn genotypes based on herbicide and insect/pest resistance genetic traits when cultivated on podzolic soils under short growing and moderately warm summer season in boreal climate. Lipids in root membranes of field grown silage-corn genotypes were previously quantified at crop maturity by ultra-high-performance liquid chromatography-hydrophilic interaction chromatography-heated electrospray ionization mass spectrometry. The lipid identified and quantified in silage-corn roots were phospholipids, glycolipids and sphingolipids. Following hierarchical cluster analysis, three groups of membrane lipids were observed to be very effective in segregating the five silage-corn genotypes. The first group consisted of hexosylceramide (HexCer), phosphatidylcholine (PC) and phosphatidylinositol (PI). The second group consisted of lysophosphatidic acid (LPA16:0) and lysophosphatidylcholine (LPC16:0), while the third group consisted of 37 molecular species from observed lipids (phospholipids, glycolipids, sphingolipids). Partial least squares-discriminant analysis (PLS-DA) based on 37 membrane lipid species, as well as principal component analysis using the variables important in projection derived from the PLS-DA segregated the five silage-corn genotypes into three groups according to their pesticide/herbicide resistant traits. This study is second to none using root lipidomics in discriminating different silage-corn genotypes based on their herbicide and insect/pest resistance genetic traits for cultivation in boreal climates. The segregated genotypes possess three different genetic traits for herbicide and insect/pest resistance including VT Double Pro (VT2P), VT Triple Pro Roundup Ready (VT3P/RR) and Roundup Ready-2 corn (RR2). These findings demonstrate that root membrane lipids could serve as appropriate chemical biosignatures to identify silage-corn genotypes based on herbicide and insect/pest resistance genetic traits suitable for cultivation in boreal climates.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号