首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2017年   3篇
  2013年   2篇
  2011年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Effects of exogenous calcium chloride (CaCl2) (20 mM) on photosynthetic gas exchange, photosystem II photochemistry, and the activities of antioxidant enzymes in tobacco plants under high temperature stress (43 °C for 2 h) were investigated. Heat stress resulted in a decrease in net photosynthetic rate (Pn), stomatal conductance as well as the apparent quantum yield (AQY) and carboxylation efficiency (CE) of photosynthesis. Heat stress also caused a decrease of the maximal photochemical efficiency of primary photochemistry (Fv/Fm). On the other hand, CaCl2 application improved Pn, AQY, and CE as well as Fv/Fm under high temperature stress. Heat stress reduced the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), whereas the activities of these enzymes either decreased less or increased in plants pretreated with CaCl2; glutathione reductase (GR) activity increased under high temperature, and it increased more in plants pretreated with CaCl2. There was an obvious accumulation of H2O2 and O2 under high temperature, but CaCl2 application decreased the contents of H2O2 and O2 under heat stress conditions. Heat stress induced the level of heat shock protein 70 (HSP70), while CaCl2 pretreatment enhanced it. These results suggested that photosynthesis was improved by CaCl2 application in heat-stressed plants and such an improvement was associated with an improvement in stomatal conductance and the thermostability of oxygen-evolving complex (OEC), which might be due to less accumulation of reactive oxygen species.  相似文献   
2.
The photosynthetic responses of wheat (Triticum aestivum L.) leaves to different levels of drought stress were analyzed in potted plants cultivated in growth chamber under moderate light. Low-to-medium drought stress was induced by limiting irrigation, maintaining 20 % of soil water holding capacity for 14 days followed by 3 days without water supply to induce severe stress. Measurements of CO2 exchange and photosystem II (PSII) yield (by chlorophyll fluorescence) were followed by simultaneous measurements of yield of PSI (by P700 absorbance changes) and that of PSII. Drought stress gradually decreased PSII electron transport, but the capacity for nonphotochemical quenching increased more slowly until there was a large decrease in leaf relative water content (where the photosynthetic rate had decreased by half or more). We identified a substantial part of PSII electron transport, which was not used by carbon assimilation or by photorespiration, which clearly indicates activities of alternative electron sinks. Decreasing the fraction of light absorbed by PSII and increasing the fraction absorbed by PSI with increasing drought stress (rather than assuming equal absorption by the two photosystems) support a proposed function of PSI cyclic electron flow to generate a proton-motive force to activate nonphotochemical dissipation of energy, and it is consistent with the observed accumulation of oxidized P700 which causes a decrease in PSI electron acceptors. Our results support the roles of alternative electron sinks (either from PSII or PSI) and cyclic electron flow in photoprotection of PSII and PSI in drought stress conditions. In future studies on plant stress, analyses of the partitioning of absorbed energy between photosystems are needed for interpreting flux through linear electron flow, PSI cyclic electron flow, along with alternative electron sinks.  相似文献   
3.
Main conclusion

Environmentally induced variation and the genotypic differences in flavonoid and phenolic content in lettuce can be reliably detected using the appropriate parameters derived from the records of rapid non-invasive fluorescence technique.

The chlorophyll fluorescence excitation ratio method was designed as a rapid and non-invasive tool to estimate the content of UV-absorbing phenolic compounds in plants. Using this technique, we have assessed the dynamics of accumulation of flavonoids related to developmental changes and environmental effects. Moreover, we have tested appropriateness of the method to identify the genotypic differences and fluctuations in total phenolics and flavonoid content in lettuce. Six green and two red genotypes of lettuce (Lactuca sativa L.) grown in pots were exposed to two different environments for 50 days: direct sunlight (UV-exposed) and greenhouse conditions (low UV). The indices based on the measurements of chlorophyll fluorescence after red, green and UV excitation indicated increase of the content of UV-absorbing compounds and anthocyanins in the epidermis of lettuce leaves. In similar, the biochemical analyses performed at the end of the experiment confirmed significantly higher total phenolic and flavonoid content in lettuce plants exposed to direct sun compared to greenhouse conditions and in red compared to green genotypes. As the correlation between the standard fluorescence indices and the biochemical records was negatively influenced by the presence of red genotypes, we proposed the use of a new parameter named Modified Flavonoid Index (MFI) taking into an account both absorbance changes due to flavonol and anthocyanin content, for which the correlation with flavonoid and phenolic content was relatively good. Thus, our results confirmed that the fluorescence excitation ratio method is useful for identifying the major differences in phenolic and flavonoid content in lettuce plants and it can be used for high-throughput pre-screening and phenotyping of leafy vegetables in research and breeding applications towards improvement of vegetable health effects.

  相似文献   
4.
Plant and microbial community composition in connection with soil chemistry determines soil nutrient cycling. The study aimed at demonstrating links between plant and microbial communities and soil chemistry occurring among and within four sites: two pine forests with contrasting soil pH and two grasslands of dissimilar soil chemistry and vegetation. Soil was characterized by C and N content, particle size, and profiles of low-molecular-weight compounds determined by high-performance liquid chromatography (HPLC) of soil extracts. Bacterial and actinobacterial community composition was assessed by terminal restriction fragment length polymorphism (T-RFLP) and cloning followed by sequencing. Abundances of bacteria, fungi, and actinobacteria were determined by quantitative PCR. In addition, a pool of secondary metabolites was estimated by erm resistance genes coding for rRNA methyltransferases. The sites were characterized by a stable proportion of C/N within each site, while on a larger scale, the grasslands had a significantly lower C/N ratio than the forests. A Spearman's test showed that soil pH was correlated with bacterial community composition not only among sites but also within each site. Bacterial, actinobacterial, and fungal abundances were related to carbon sources while T-RFLP-assessed microbial community composition was correlated with the chemical environment represented by HPLC profiles. Actinobacteria community composition was the only studied microbial characteristic correlated to all measured factors. It was concluded that the microbial communities of our sites were influenced primarily not only by soil abiotic characteristics but also by dominant litter quality, particularly, by percentage of recalcitrant compounds.  相似文献   
5.
6.
The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis.  相似文献   
7.
Frequently asked questions about chlorophyll fluorescence,the sequel   总被引:2,自引:0,他引:2  
Using chlorophyll (Chl) a fluorescence many aspects of the photosynthetic apparatus can be studied, both in vitro and, noninvasively, in vivo. Complementary techniques can help to interpret changes in the Chl a fluorescence kinetics. Kalaji et al. (Photosynth Res 122:121–158, 2014a) addressed several questions about instruments, methods and applications based on Chl a fluorescence. Here, additional Chl a fluorescence-related topics are discussed again in a question and answer format. Examples are the effect of connectivity on photochemical quenching, the correction of F V /F M values for PSI fluorescence, the energy partitioning concept, the interpretation of the complementary area, probing the donor side of PSII, the assignment of bands of 77 K fluorescence emission spectra to fluorescence emitters, the relationship between prompt and delayed fluorescence, potential problems when sampling tree canopies, the use of fluorescence parameters in QTL studies, the use of Chl a fluorescence in biosensor applications and the application of neural network approaches for the analysis of fluorescence measurements. The answers draw on knowledge from different Chl a fluorescence analysis domains, yielding in several cases new insights.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号