首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2009年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.

Background and Aims

The oriental forest ecosystem in Madagascar has been seriously impacted by fragmentation. The pattern of genetic diversity was analysed on a tree species, Dalbergia monticola, which plays an important economic role in Madagascar and is one of the many endangered tree species in the eastern forest.

Methods

Leaves from 546 individuals belonging to 18 small populations affected by different levels of fragmentation were genotyped using eight nuclear (nuc) and three chloroplast (cp) microsatellite markers.

Key Results

For nuclear microsatellites, allelic richness (R) and heterozygosity (He,nuc) differed between types of forest: R = 7·36 and R = 9·55, He,nuc = 0·64 and He,nuc = 0·80 in fragmented and non-fragmented forest, respectively, but the differences were not significant. Only the mean number of alleles (Na,nuc) and the fixation index FIS differed significantly: Na,nuc = 9·41 and Na,nuc = 13·18, FIS = 0·06 and FIS = 0·15 in fragmented and non-fragmented forests, respectively. For chloroplast microsatellites, estimated genetic diversity was higher in non-fragmented forest, but the difference was not significant. No recent bottleneck effect was detected for either population. Overall differentiation was low for nuclear microsatellites (FST,nuc = 0·08) and moderate for chloroplast microsatellites (FST,cp = 0·49). A clear relationship was observed between genetic and geographic distance (r = 0·42 P < 0·01 and r = 0·42 P = 0·03 for nuclear and chloroplast microsatellites, respectively), suggesting a pattern of isolation by distance. Analysis of population structure using the neighbor-joining method or Bayesian models separated southern populations from central and northern populations with nuclear microsatellites, and grouped the population according to regions with chloroplast microsatellites, but did not separate the fragmented populations.

Conclusions

Residual diversity and genetic structure of populations of D. monticola in Madagascar suggest a limited impact of fragmentation on molecular genetic parameters.  相似文献   
2.
There is an urgent need to maintain and restore a broad genetic base for the management of Dalbergia monticola, a very economically important but endangered tree species in Madagascar. Random amplified polymorphism DNAs (RAPDs) and chloroplast microsatellite markers were used to quantify the genetic variation and to analyse the geographic distribution of diversity. Ten locations covering most of the natural range were sampled. Sixty-three RAPD polymorphic and 15 monomorphic loci were obtained from 122 individuals. Genetic diversity was low and very close among populations and regions. The unrooted neighbour-joining tree exhibited 4 groups, representing 6% (p = 0.000) of the total variation. The greater part of the variance, 81%, was observed within populations. A Mantel test suggested that genetic distances between populations were weakly correlated with geographic distances (R = 0.46, p = 0.12). The three chloroplast microsatellite primers assayed on 100 individuals gave 13 chlorotypes. Most of the populations showed 2 or 3 haplotypes. Haplotype diversity for the total population was equal to HeCp = 0.83 and ranged from 0.00 to 0.80 among the populations. The unrooted neighbour-joining tree exhibited 4 groups corresponding to the four regions representing 80% (p = 0.0000) of the total variation. Genetic diversity varies with regions, the north and south being less variable. Chlorotype distribution, the phylogenetic tree and historical information suggest that putative refugias in the centre-north region originating from the early Holocene could explain the pattern of variation observed today. By combining the results obtained at nuclear and organellar loci, a strategy of conservation based on evolutionarily significant units is proposed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号