首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
The extracellular carbohydrate-binding domain of the Type I transmembrane receptor CD44 is known to undergo affinity switching, where change in conformation leads to enhanced binding of its carbohydrate ligand hyaluronan. Separate x-ray crystallographic and NMR experiments have led to competing explanations, with the former supporting minor conformational changes at the binding site and the latter a major order-to-disorder unfolding transition distant from the binding site. Here, all-atom explicit-solvent molecular dynamics studies employing adaptive biasing force sampling revealed a substantial favorable free-energy change associated with contact formation between the Arg41 side chain and hyaluronan at the binding site, independent of whether the distant site was ordered or disordered. Analogous computational experiments on Arg41Ala mutants showed loss of this favorable free-energy change, consistent with existing experimental data. More provocatively, the simulation data revealed the molecular mechanism by which the order-to-disorder transition enhances hyaluronan binding: in the disordered state, a number of basic residues gain sufficient conformational freedom—lacking in the ordered state—to spontaneously form side-chain contacts with hyaluronan. Mutation of these residues to Ala had been known to decrease binding affinity, but there had previously been no structural explanation, given their lack of proximity to the carbohydrate-binding site in existing structures of the complex.  相似文献   
2.
The Persian Lizard, Iranolacerta brandtii, was until recently considered to be restricted to north-western Iran (Azerbaijan and Esfahan provinces). However, two recent studies have revealed the existence of populations in Eastern Anatolia, extending the range of this species for about 230?km westwards. The fragmented distribution of this species has been considered to be a consequence of the climatic oscillations during the Pleistocene and Holocene, which created events of alternating contact and isolation of populations in distinct glacial refugia. According to our obtained genealogy derived from three mitochondrial fragments (12S rRNA, 16S rRNA and cytb), the Turkish specimens cluster together but form an independent clade, sister to the individuals from Tabriz in Iran. The separation of these two clades is concurrent with the cladogenesis between the Esfahan and Ardabil clades, estimated to have taken place during the late Holocene.  相似文献   
3.
4.
5.
In this study ultrastructural differences between endothelial cells of different location in Penstemon gentianoides have been examined with electron microscope at mature embryo sac phase. Embryo sac is of the Polygonum type and surrounded by endothelium except the micropylar region. The cuticle is located primarily around the chalazal three-fourths of the embryo sac. Endothelium cells around the chalaza and toward the micropylar region are rich in cytoplasmic organelles. The cytoplasm of endothelial cells near the central cell has large vacuoles and few organelles. There are also plasmodesmas on the anticlinal walls of endothelial cells. The endothelium and the micropylar integumentary cells play a role in transport of metabolites into the embryo sac.  相似文献   
6.
This study presents the preparation of molecularly imprinted matrices by using radiation‐induced grafting technique onto polyethylene/polypropylene (PE/PP) non‐woven fabrics. Atrazine imprinted polymers were grafted onto PE/PP non‐woven fabrics through the use of methacrylic acid (MAA) and ethylene glycol dimethylacrylate (EGDMA) as the functional monomer and crosslinking agent, respectively. Grafted MIPs were characterized by attenuated total reflectance Fourier transform infra‐red spectroscopy (ATR‐FTIR), X‐ray photoelectron spectroscopy (XPS), elemental analysis, scanning electron microscopy (SEM), and positron annihilation lifetime spectroscopy (PALS). The average diameter of free volume holes was determined as 0.612 nm which correlates very well with the size of template molecule atrazine, 0.512 nm. Binding behaviors were investigated against various factors, such as concentration of template molecule, pH, and contact time. Furthermore, the specific selectivity of grafted MIP on non‐woven fabric was studied by using other common triazine compounds, such as simazine and metribuzine which show structural similarities to atrazine. The specific binding values for atrazine, simazine, and metribuzine were determined as 40%, 2.5%, and 1.5%, respectively.  相似文献   
7.
In this study, we wanted to examine the effect of magnesium (Mg2+) supplementation on the experimental 3-methyl cholantrene (3-MC)-induced fibrosarcoma and alterations in (Mg2+) distribution in several tissues of the rats, during carcinogenesis. It was determined that serum and tissue (Mg2+) levels of the rats in (Mg2+)-supplemented diet group were higher than those of the rats in the (Mg2+)-nonsupplemented and control groups. The mean time of fibrosarcoma development for (Mg2+)-supplemented group was longer than (Mg2+)-nonsupplemented group (p<0.05). Symptoms of hypermagnesemia were not observed in any of the rats. These results suggests that dietary (Mg2+) supplementation may have a partial anticarcinogenic effect on experimental 3-MC-induced fibrosarcoma by prolongation of the latent period of carcinogenesis.  相似文献   
8.
Ward AB  Guvench O  Hills RD 《Proteins》2012,80(9):2178-2190
Coarse-grained (CG) modeling has proven effective for simulating lipid bilayer dynamics on scales of biological interest. Modeling the dynamics of flexible membrane proteins within the bilayer, on the other hand, poses a considerable challenge due to the complexity of the folding or conformational landscape. In the present work, the multiscale coarse-graining method is applied to atomistic peptide-lipid "soup" simulations to develop a general set of CG protein-lipid interaction potentials. The reduced model was constructed to be compatible with recent solvent-free CG models developed for protein-protein folding and lipid-lipid model bilayer interactions. The utility of the force field was demonstrated by molecular dynamics simulation of the MsbA ABC transporter in a mixed DOPC/DOPE bilayer. An elastic network was parameterized to restrain the MsbA dimer in its open, closed and hydrolysis intermediate conformations and its impact on domain flexibility was examined. Conformational stability enabled long-time dynamics simulation of MsbA freely diffusing in a 25 nm membrane patch. Three-dimensional density analysis revealed that a shell of weakly bound "annular lipids" solvate the membrane accessible surface of MsbA and its internal substrate-binding chamber. The annular lipid binding modes, along with local perturbations in head group structure, are a function of the orientation of grooves formed between transmembrane helices and may influence the alternating access mechanism of substrate entry and translocation.  相似文献   
9.
Herpes simplex virus type-1 (HSV-1) and type-2 (HSV-2) are among the most "successful" pathogens and code for a variety of proteins to direct the apoptosis/necrosis responses of the cells they infect. Nitric oxide (NO) is an important intracellular signaling molecule in pathological processes. Acyclovir (ACV) is a chain terminator that targets the viral DNA polymerase as an antiviral agent. In this study, NO signals, and apoptosis/necrosis responses of HEp-2 cells were compared when infected by HSV-1 and -2 for 24 hours against non toxic doses (starting from 48.8, 24.4, 12.2, 6.1, 3 to 1.5 microg/mL) of ACV. In 48.8, 24.4 and 12.2 microg/mL of ACV, HSV-1 had an "upregulating effect" whereas HSV-2 had a "downregulating effect" on NO production, and in 6.1, 3 and 1.5 microg/mL of ACV HSV-1 had a "down-regulating effect" whereas HSV-2 had an "upregulating effect" on NO responses (HSV-1 had a "downregulating effect" on NO production whereas HSV-2 had an "upregulating effect" on NO production without any ACV). In 48.8, 24.4 and 12.2 microg/mL of ACV, HSV-1 had an "anti-apoptotic effect" whereas HSV-2 had a stimulation on "apoptotic effect", and in 6.1, 3 and 1.5 microg/mL of ACV HSV-1 had an "apoptotic effect" and HSV-2 turned to "its natural viral apoptotic effect level" (HSV-1 had an "natural viral apoptotic effect" whereas HSV-2 had a "natural viral apoptotic effect" on apoptosis response without any ACV). In 48.8, and 24.4 microg/mL of ACV, HSV-1 had significant "necrotic effect" on necrotic cellular death, "necrosis" increased in 12.2, 6.1, 3 and 1.5 microg/mL of ACV (HSV-1 had a negligible "necrotic effect" on HEp-2 cells alone), and HSV-2 had a "natural viral necrotic effect" alone; and also in all non toxic ACV concentrations. These results showed that HSV-1 and -2 had different "strategies" on apoptosis/necrosis and NO with and without non toxic ACV. These differences deserve further studies in order to explain the interactions between apoptotic/anti apoptotic, necrotic genes and NO, and ACV in HSV-1 and HSV-2 infections respectively.  相似文献   
10.
Guvench O  Price DJ  Brooks CL 《Proteins》2005,58(2):407-417
The trypsin-like serine proteases comprise a structurally similar family of proteins with a wide diversity of biological functions. Members of this family play roles in digestion, hemostasis, immune responses, and cancer metastasis. Bovine trypsin is an archetypical member of this family that has been extensively characterized both functionally and structurally, and that preferentially hydrolyzes Arg/Lys-Xaa peptide bonds. We have used molecular dynamics (MD) simulations to study bovine trypsin complexed with the two noncovalent small-molecule ligands, benzamidine and tranylcypromine, that have the same hydrogen-bond donating moieties as Arg and Lys side-chains, respectively. Multiple (10) simulations ranging from 1 ns to 2.2 ns, with explicit water molecules and periodic boundary conditions, were performed. The simulations reveal that the trypsin binding pocket residues are relatively rigid regardless of whether there is no ligand, a high-affinity ligand (benzamidine), or a low-affinity ligand (tranylcypromine). The thermal average of the conformations sampled by benzamidine bound to trypsin is planar and consistent with the planar internal geometry of the benzamidine crystallographic model coordinates. However, the most probable bound benzamidine conformations are +/-25 degrees out of plane, implying that the observed X-ray electron density represents an average of densities from two mirror symmetric, nonplanar conformations. Solvated benzamidine has free energy minima at +/-45 degrees , and the induction of a more planar geometry upon binding is associated with approximately 1 kcal/mol of intramolecular strain. Tranylcypromine's hydrogen-bonding pattern in the MD differs substantially from that inferred from the X-ray electron density. Early in simulations of this system, tranylcypromine adopts an alternative binding conformation, changing from the crystallographic conformation, with a direct hydrogen bond between its amino moiety and the backbone oxygen of Gly219, to one having a bridging water molecule. This result is consistently seen with the CHARMM22, Amber, or OPLS-AA force fields. The trypsin-tranylcypromine hydrogen-bonding pattern observed in the simulations also occurs as the crystallographic binding mode of the Lys15 side-chain of bovine pancreatic trypsin inhibitor bound to trypsin. In this latter cocrystal, a bridging crystallographic water does reside between the side-chain's amino group and the trypsin Gly219 backbone oxygen. Furthermore, the trypsin-tranylcypromine simulations sample two different stable noncrystallographic binding poses. These data suggest that some of the electron density ascribed to tranylcypromine in the X-ray model is rather due to a bound water molecule, and that multiple tranylcypromine binding conformations (crystallographic disorder) may be the cause of ambiguous electron density. The combined trypsin-benzamidine and trypsin- tranylcypromine results highlight the ability of simulations to augment protein-ligand complex structural data by deconvoluting the effects of thermal and structural averaging, and by finding energetically optimal ligand and bound water positions for weakly bound ligands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号