首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   18篇
  2023年   2篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2015年   9篇
  2014年   11篇
  2013年   15篇
  2012年   8篇
  2011年   8篇
  2010年   8篇
  2009年   10篇
  2008年   12篇
  2007年   13篇
  2006年   11篇
  2005年   8篇
  2004年   5篇
  2003年   4篇
  2002年   7篇
  2001年   13篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1997年   7篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   6篇
  1985年   3篇
  1984年   6篇
  1983年   8篇
  1982年   3篇
  1981年   4篇
  1979年   10篇
  1977年   3篇
  1975年   4篇
  1973年   3篇
  1972年   5篇
  1971年   3篇
  1968年   3篇
  1967年   5篇
  1966年   5篇
  1946年   2篇
  1935年   2篇
  1922年   2篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
1.
High-resolution proton and carbon-13 NMR of membranes: why sonicate?   总被引:2,自引:0,他引:2  
E Oldfield  J L Bowers  J Forbes 《Biochemistry》1987,26(22):6919-6923
We have obtained high-field (11.7-T) proton and carbon-13 Fourier transform (FT) nuclear magnetic resonance (NMR) spectra of egg lecithin and egg lecithin-cholesterol (1:1) multibilayers, using "magic-angle" sample spinning (MASS) techniques, and sonicated egg lecithin and egg lecithin-cholesterol (1:1) vesicles, using conventional FT NMR methods. Resolution of the proton and carbon-13 MASS NMR spectra of the pure egg lecithin samples is essentially identical with that of sonicated samples, but spectra of the unsonicated lipid, using MASS, can be obtained very much faster than with the more dilute, sonicated systems. With the 1:1 lecithin-cholesterol systems, proton MASS NMR spectra are virtually identical with conventional FT spectra of sonicated samples, while with 13C NMR, we demonstrate that most 13C nuclei in the cholesterol moiety can be monitored, even though these same nuclei are essentially invisible, i.e., are severely broadened, in the corresponding sonicated systems. In addition, 13C MASS NMR, spectra can again be recorded much faster than with sonicated samples, due to concentration effects. Taken together, these results strongly suggest there will seldom be need in the future to resort to ultrasonic disruption of lipid bilayer membranes in order to obtain high-resolution proton or carbon-13 NMR spectra.  相似文献   
2.
The tetrasaccharides GalNAcß1-4[NeuAc2-3]Galß1-4Glc and GalNAcß1-4[NeuAc2-3]Galß1-4GlcNAc were synthesised by enzymic transfer of GalNAc from UDP-GalNAc to 3-sialyllactose (NeuAc2-3Galß1-4Glc) and 3-sialyl-N-acetyllactosamine (NeuAc2-3Galß1-4GlcNAc). The structures of the products were established by methylation and1H-500 MHz NMR spectroscopy. In Sda serological tests the product formed with 3-sialyl-N-acetyllactosamine was highly active whereas that formed with 3-sialyllactose had only weak activity.  相似文献   
3.
ESR spin trapping technique was used to detect and analyze free radical formation. When 6-hydroxydomine (6-OHDA) was incubated alone or in the presence of a free radical generating system (H2O2 and FeSO4), hydroxyl free radicals were observed in a concentration-dependent manner. Glutathione was found to be the most effective scavenger of the ESR signal when compared with vitamin E or Mannitol. The addition of ethanol resulted in the formation of the pure hydroxyethyl free radicals. The amount of hydroxyethyl free radicals in the system was dependent upon the concentration of ethanol and the formation of hydroxyethyl free radicals correlated well with the extent of lipid peroxidation and the loss of enzymic activity of the membrane-bound (Na+, K+)-ATPase. We suggest that in the biological system ethanol may potentiate the neurotoxicity of 6-OHDA with the formation of hydroxyethyl free radicals, which are longer-lived and far more damaging to membranes that the hydroxyl radicals. These data lead us to further hypothesize that the neuronal degeneration caused by 6-OHDA and other compounds that generate free radicals could be potentiated in the presence of ethanol.  相似文献   
4.
S Schramm  E Oldfield 《Biochemistry》1983,22(12):2908-2913
We show that measurement of the spin-lattice (T1) and spin-spin (T2) relaxation times (or line widths) of irrotationally bound 2H nuclei in macromolecules undergoing isotropic rotational motion outside of the extreme narrowing limit (i.e., for the case omega 02 tau R2 much greater than 1) permits determination of both the rotational correlation time (tau R) of the macromolecule and the electric quadrupole coupling constant (e2qQ/h) of the 2H label. The technique has the advantage over 13C nuclear magnetic resonance (NMR) that no assumptions about bond lengths (which appear to the sixth power in 13C relaxation studies) or relaxation mechanisms need to be made, since relaxation will always be quadrupolar, even for aromatic residues at high field. Asymmetry parameter (eta) uncertainties are shown to cause negligible effects on tau R determinations, and in any case it is shown that both e2qQ/h and eta may readily be determined in separate solid-state experiments. By way of example, we report 2H NMR results on aqueous lysozyme (EC 3.2.1.17) at 5.2 and 8.5 T (corresponding to 2H-resonance frequencies of 34 and 55 MHz). Interpretation of the results in terms of the isotropic rigid-rotor model yields e2qQ/h values of approximately equal to 170 or approximately equal to 190 kHz, respectively, for the imidazolium and free-base forms of [epsilon 1-2H] His-15 lysozyme in solution, in excellent agreement with e2qQ/h values of approximately 167 and approximately 190 kHz obtained for the free amino acids in the solid state. In principle, the method may in suitable cases permit comparison between the dynamic structures of proteins in solution and in the crystalline solid state.  相似文献   
5.
6.
F Adebodun  J Chung  B Montez  E Oldfield  X Shan 《Biochemistry》1992,31(18):4502-4509
We have obtained 1H and 13C magic-angle sample-spinning (MAS) nuclear magnetic resonance (NMR) spectra of three glycosyldiacylglycerol-water (1:1, weight ratio) mesophases, at 11.7 T, as a function of temperature, in order to probe lipid headgroup, backbone, and acyl chain dynamics by using natural-abundance NMR probes. The systems investigated were monogalactosyldiacyldiglyceride [MGDG; primarily 1,2-di[(9Z,12Z,15Z)octadec-9,12,15-trienoyl++ +]-3-beta-D-galactopyranosyl- sn-glycerol]; digalactosyldiacyldiglyceride [DGDG; primarily 1,2-di[(9Z,12Z,15Z)octadec-9,12,15-trienoyl++ +]-3- (alpha-D-galactopyranosyl-1-6-beta-D-glactopyranosyl)-sn-glycerol] ; and sulfoquinovosyldiacyldiglyceride [SQDG; primarily 1-[(9Z,12Z,15Z)octadec-9,12,15-trienoyl]-2 -hexadecanoyl-3-(6-deoxyl-6- sulfono-alpha-D-glucopyranosyl)-sn-glycerol]. At approximately 22 degrees C, all three lipid-water systems give well-resoled 13C and 1H MAS NMR spectra, characteristic of fluid, liquid-crystalline mesophases. 13C spin-lattice relaxation times of the headgroup and glycerol backbone carbons of all three materials give, within experimental error, the same NT1 values (approximately 400 ms), implying similar high-frequency motions, independent of headgroup size and charge. Upon cooling, pronounced line broadenings are observed, due to an increase in slow motional behavior. For each lipid, the onset of line broadening is seen with the glycosyl headgroup, glycerol backbone, and the first two or three carbons of the acyl chains. By approximately -20 degrees, all headgroup carbon resonances are broadened beyond detection. Both galactose moieties in DGDG "freeze out" together, implying a rigid-body motion of the disaccharide unit. Upon further cooling, the bulk polymethylene chain resonances in all three systems (in both 13C and 1H MAS) broaden greatly, followed by the olefinic and allylic carbon resonances.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
7.
Rhodococcus sp. strain IGTS8 possesses an enzymatic pathway that can remove covalently bound sulfur from dibenzothiophene (DBT) without breaking carbon-carbon bonds. The DNA sequence of a 4.0-kb BstBI-BsiWI fragment that carries the genes for this pathway was determined. Frameshift and deletion mutations established that three open reading frames were required for DBT desulfurization, and the genes were designated soxABC (for sulfur oxidation). Each sox gene was subcloned independently and expressed in Escherichia coli MZ1 under control of the inducible lambda pL promoter with a lambda cII ribosomal binding site. SoxC is an approximately 45-kDa protein that oxidizes DBT to DBT-5,5'-dioxide. SoxA is an approximately 50-kDa protein responsible for metabolizing DBT-5,5'-dioxide to an unidentified intermediate. SoxB is an approximately 40-kDa protein that, together with the SoxA protein, completes the desulfurization of DBT-5,5'-dioxide to 2-hydroxybiphenyl. Protein sequence comparisons revealed that the predicted SoxC protein is similar to members of the acyl coenzyme A dehydrogenase family but that the SoxA and SoxB proteins have no significant identities to other known proteins. The sox genes are plasmidborne and appear to be expressed as an operon in Rhodococcus sp. strain IGTS8 and in E. coli.  相似文献   
8.
Chemical shifts and three-dimensional protein structures   总被引:4,自引:4,他引:0  
Summary During the past three years it has become possible to compute ab initio the 13C, 15N and 19F NMR chemical shifts of many sites in native proteins. Chemical shifts are beginning to become a useful supplement to more established methods of solution structure determination, and may find utility in solid-state analysis as well. From 13C NMR, information on , and torsions can be obtained, permitting both assignment verification, and structure refinement and prediction. For 15N, both torsional and hydrogen-bonding effects are important, while for 19F, chemical shifts are primarily indicators of the local charge field. Chemical shift calculations are still slow, but shielding hypersurfaces — the shift as a function of the dihedral angles that define the molecular conformation — are becoming accessible. Over the next few years, theoretical and computer hardware improvements will enable more routine use of chemical shifts in structural studies, including the study of metal-ligand interactions, the analysis of drug and substrate binding and catalysis, the study of folding/unfolding pathways, as well as the characterization of conformational substates. Rather than simply being a necessary prerequisite for multidimensional NMR, chemical shifts and chemical shift non-equivalence due to folding are now beginning to be useful for structural characterization.  相似文献   
9.
Catecholamines induce net salt and water movements in duck red cells incubated in isotonic solutions. The rate of this response is approximately three times greater than a comparable effect observed in 400 mosmol hypertonic solutions in the absence of hormone (W.F. Schmidt and T. J. McManus. 1977 a.J. Gen. Physiol. 70:59-79. Otherwise, these two systems share a great many similarities. In both cases, net water and salt movements have a marked dependence on external cation concentrations, are sensitive to furosemide and insensitive to ouabain, and allow the substitution of rubidium for external potassium. In the presence of ouabain, but the absence of external potassium (or rubidium), a furosemide-sensitive net extrusion of sodium against a large electrochemical gradient can be demonstrated. When norepinephrine-treated cells are incubated with ouabain and sufficient external sodium, the furosemide-sensitive, unidirectional influxes of both sodium and rubidium are half- maximally saturated at similar rubidium concentrations; with saturating external rubidium, the same fluxes are half-maximal at comparable levels of external sodium. In the absence of sodium, a catecholamine-stimulated, furosemide-sensitive influx of rubidium persists. In the absence of rubidium, a similar but smaller component of sodium influx can be seen. We interpret these results in terms of a cotransport model for sodium plus potassium which is activated by hypertonicity or norepinephrine. When either ion is absent from the incubation medium, the system promotes an exchange-diffusion type of movement of the co-ion into the cells. In the absence of external potassium, net movement of potassium out of the cell leads to a coupled extrusion of sodium against its electrochemical gradient.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号