首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   8篇
  国内免费   1篇
  2022年   1篇
  2021年   3篇
  2015年   4篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1979年   4篇
  1976年   1篇
排序方式: 共有85条查询结果,搜索用时 31 毫秒
1.
2.
The effect of lincocin (a plastid protein synthesis inhibitor) treatment on the greening process of bean (Phaseolus vulgaris L.) leaves have been studied. In comparison with control leaves treated ones had a decreased rate of chloroplast development. They had a marked chlorophyll deficiency and a decreased chlorophyll a/b ratio. Some long and short wavelength forms of chlorophyll a were lacking as evidenced from the absorption spectra at 25°C and the fluorescence spectra at 77°K. The –14CO2 fixation was inhibited by 80–90% in treated leaves. The fluorescence induced by the measuring light was greater in the treated leaves than in the control ones, and the kinetics of the decline of the relative fluorescence intensity were also different. Electron microscopic studies showed macrogranum-like structures and incomplete membrane vesicles in the treated plastids. After longer treatment a destruction of membranes was observed. The results indicate some structural and functional membrane deficiencies and instability of the membranes.  相似文献   
3.
Summary

The larval development of the ophiocomid ophiuroid Ophiomastix venosais described using SEM. The gastrula transforms into a uniformly ciliated early larva which progressively changes into a lecithotrophic late premetamorphic larva with a continuous bilateral ciliated band. This stage is short-lived and equivalent to a highly reduced ophiopluteus. Comparisons between O. venosa and other ophiuroid species whose development has been investigated suggest that, whatever the developmental mode (lecithotrophic or planktotrophic), a pluteus stage always occurs in ophiuroids with planktonic development. Two metamorphic stages were identified, the late metamorphic larva differing from the early one by the closure of the larval mouth. The appearance of the permanent mouth marks the end of the metamorphosis. The postlarva still possesses remnants of larval features. The transformation of the reduced ophiopluteus into a barrel-shaped metamorphic larva with transverse ciliated bands, a vitellaria larva, is followed. The possible occurrence of a unique type of metamorphic larva in non-brooding ophiuroids is discussed. Verification of this, however, needs further SEM investigations on metamorphic larva from species having “regular” planktotrophic development.  相似文献   
4.
5.
The chick pineal organ is recognized to contain an endogenous circadian oscillator as well as having direct photic input pathways and the capability of synthesizing melatonin. Despite its interesting circadian cell biology, far less is known about the chick pineal as compared to mammalian pineal glands. The goals of our research were to identify and characterize novel components of the circadian system in this photoneuroendocrine organ. Using a subtractive screening strategy of a nocturnal chick pineal cDNA library, we identified numerous genes whose expression in the chick pineal has never been reported. Among these, we focused our attention on a homologue to the regulatory subunit of the mammalian serine/threonine protein phosphatase (STPP) 2A. The expression of this gene in the chick pineal is highly circadian both in vivo and in vitro. Analysis of the PP2A enzyme in this tissue revealed that it is predominantly cytosolic in localization, sensitive to classical PP2A inhibitors, and far more active during the subjective night. Interestingly, the acute pharmacological inhibition of PP2A leads to elevated phosphoCREB levels and concomitant melatonin secretion, indicating that this enzyme participates at some level in the control of nocturnal pineal melatonin synthesis. In a second aspect of our research, we examined the mechanisms underlying the circadian rhythmicity of cyclic GMP in the chick pineal. This signaling molecule is poorly understood, despite its well-known, high-amplitude circadian rhythms and the presence of many cGMP-dependent targets in this tissue. Our work has shown that although both soluble (sGC) and membrane-bound (mGC) forms of guanylyl cyclase are present, the primary contributor to the circadian rhythms of cGMP is the mGC-B enzyme, which is activated only by the natriuretic peptide CNP. As pharmacological blockade of mGC-B (but not sGC) suppresses nocturnal cGMP levels, we conclude that CNP-dependent mechanisms are involved. Hence, the circadian clock in the chick pineal appears to drive either CNP secretion or mGC-B expression (or synthetic efficiency) in order to elevate nocturnal cGMP. Conversely, light may inhibit cGMP by uncoupling this drive. These data provide new strategies for understanding both photic input pathways (presumed to depend on cGMP) and cGMP-dependent cellular function in the chick pineal organ.  相似文献   
6.
We investigated the role of the accessory alpha(2)delta subunit on the voltage-dependent facilitation of cardiac L-type Ca(2+) channels (alpha(1C)). alpha(1C) Channels were coexpressed in Xenopus oocytes with beta(3) and alpha(2)delta calcium channel subunits. In alpha(1C) + beta(3), the amplitude of the ionic current (measured during pulses to 10 mV) was in average approximately 1.9-fold larger after the application of a 200-ms prepulse to +80 mV. This phenomenon, commonly referred to as voltage-dependent facilitation, was not observed when alpha(2)delta was coexpressed with alpha(1C) + beta(3). In alpha(1C) + beta(3), the prepulse produced a left shift ( approximately 40 mV) of the activation curve. Instead, the activation curve for alpha(1C) + beta(3) + alpha(2)delta was minimally affected by the prepulse and had a voltage dependence very similar to the G-V curve of the alpha(1C) + beta(3) channel facilitated by the prepulse. Coexpression of alpha(2)delta with alpha(1C) + beta(3) seems to mimic the prepulse effect by shifting the activation curve toward more negative potentials, leaving little room for facilitation. The facilitation of alpha(1C) + beta(3) was associated with an increase of the charge movement. In the presence of alpha(2)delta, the charge remained unaffected after the prepulse. Coexpression of alpha(2)delta seems to set all the channels in a conformational state from where the open state can be easily reached, even without prepulse.  相似文献   
7.
Previous studies have demonstrated that the slope of the function relating the action potential duration (APD) and the diastolic interval, known as the APD restitution curve, plays an important role in the initiation and maintenance of ventricular fibrillation. Since the APD restitution slope critically depends on the kinetics of the L-type Ca(2+) current, we hypothesized that manipulation of the subunit composition of these channels may represent a powerful strategy to control cardiac arrhythmias. We studied the kinetic properties of the human L-type Ca(2+) channel (Ca(v)1.2) coexpressed with the alpha(2)delta-subunit alone (alpha(1C) + alpha(2)delta) or in combination with beta(2a), beta(2b), or beta(3) subunits (alpha(1C) + alpha(2)delta + beta), using Ca(2+) as the charge carrier. We then incorporated the kinetic properties observed experimentally into the L-type Ca(2+) current mathematical model of the cardiac action potential to demonstrate that the APD restitution slope can be selectively controlled by altering the subunit composition of the Ca(2+) channel. Assuming that beta(2b) most closely resembles the native cardiac L-type Ca(2+) current, the absence of beta, as well as the coexpression of beta(2a), was found to flatten restitution slope and stabilize spiral waves. These results imply that subunit modification of L-type Ca(2+) channels can potentially be used as an antifibrillatory strategy.  相似文献   
8.
Early afterdepolarizations (EADs) associated with prolongation of the cardiac action potential (AP) can create heterogeneity of repolarization and premature extrasystoles, triggering focal and reentrant arrhythmias. Because the L-type Ca2+ current (ICa,L) plays a key role in both AP prolongation and EAD formation, L-type Ca2+ channels (LTCCs) represent a promising therapeutic target to normalize AP duration (APD) and suppress EADs and their arrhythmogenic consequences. We used the dynamic-clamp technique to systematically explore how the biophysical properties of LTCCs could be modified to normalize APD and suppress EADs without impairing excitation–contraction coupling. Isolated rabbit ventricular myocytes were first exposed to H2O2 or moderate hypokalemia to induce EADs, after which their endogenous ICa,L was replaced by a virtual ICa,L with tunable parameters, in dynamic-clamp mode. We probed the sensitivity of EADs to changes in the (a) amplitude of the noninactivating pedestal current; (b) slope of voltage-dependent activation; (c) slope of voltage-dependent inactivation; (d) time constant of voltage-dependent activation; and (e) time constant of voltage-dependent inactivation. We found that reducing the amplitude of the noninactivating pedestal component of ICa,L effectively suppressed both H2O2- and hypokalemia-induced EADs and restored APD. These results, together with our previous work, demonstrate the potential of this hybrid experimental–computational approach to guide drug discovery or gene therapy strategies by identifying and targeting selective properties of LTCC.  相似文献   
9.
The L-type Ca current (ICa,L), essential for normal cardiac function, also regulates dynamic action potential (AP) properties that promote ventricular fibrillation. Blocking ICa,L can prevent ventricular fibrillation, but only at levels suppressing contractility. We speculated that, instead of blocking ICa,L, modifying its shape by altering kinetic features could produce equivalent anti-fibrillatory effects without depressing contractility. To test this concept experimentally, we overexpressed a mutant Ca-insensitive calmodulin (CaM1234) in rabbit ventricular myocytes to inhibit Ca-dependent ICa,L inactivation, combined with the ATP-sensitive K current agonist pinacidil or ICa,L blocker verapamil to maintain AP duration (APD) near control levels. Cell shortening was enhanced in pinacidil-treated myocytes, but depressed in verapamil-treated myocytes. Both combinations flattened APD restitution slope and prevented APD alternans, similar to ICa,L blockade. To predict the arrhythmogenic consequences, we simulated the cellular effects using a new AP model, which reproduced flattening of APD restitution slope and prevention of APD/Cai transient alternans but maintained a normal Cai transient. In simulated two-dimensional cardiac tissue, these changes prevented the arrhythmogenic spatially discordant APD/Cai transient alternans and spiral wave breakup. These findings provide a proof-of-concept test that ICa,L can be targeted to increase dynamic wave stability without depressing contractility, which may have promise as an antifibrillatory strategy.  相似文献   
10.
Prolonged depolarization induces a slow inactivation process in some K+ channels. We have studied ionic and gating currents during long depolarizations in the mutant Shaker H4-Δ(6–46) K+ channel and in the nonconducting mutant (Shaker H4-Δ(6–46)-W434F). These channels lack the amino terminus that confers the fast (N-type) inactivation (Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1991. Neuron. 7:547–556). Channels were expressed in oocytes and currents were measured with the cut-open-oocyte and patch-clamp techniques. In both clones, the curves describing the voltage dependence of the charge movement were shifted toward more negative potentials when the holding potential was maintained at depolarized potentials. The evidences that this new voltage dependence of the charge movement in the depolarized condition is associated with the process of slow inactivation are the following: (a) the installation of both the slow inactivation of the ionic current and the inactivation of the charge in response to a sustained 1-min depolarization to 0 mV followed the same time course; and (b) the recovery from inactivation of both ionic and gating currents (induced by repolarizations to −90 mV after a 1-min inactivating pulse at 0 mV) also followed a similar time course. Although prolonged depolarizations induce inactivation of the majority of the channels, a small fraction remains non–slow inactivated. The voltage dependence of this fraction of channels remained unaltered, suggesting that their activation pathway was unmodified by prolonged depolarization. The data could be fitted to a sequential model for Shaker K+ channels (Bezanilla, F., E. Perozo, and E. Stefani. 1994. Biophys. J. 66:1011–1021), with the addition of a series of parallel nonconducting (inactivated) states that become populated during prolonged depolarization. The data suggest that prolonged depolarization modifies the conformation of the voltage sensor and that this change can be associated with the process of slow inactivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号