首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2021年   1篇
  2015年   1篇
  2014年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Predicting the behavior, fate, and transport potential of a herbicide in any soil involves understanding the sorption characteristics. The sorption characteristics of glyphosate (GPS) on soil and their main components were investigated, indicating that the mineral phase is more important than the organic carbon in adsorption of GPS. Sorption isotherms were determined from each component using the batch equilibrium method at various concentrations (5, 10, 15, 20, 25, and 30 mg L?1) and sorption affinity of GPS was approximated by the Freundlich equation. The sorption strength K f [mg kg?1 (L mg?1)?n] across the various components ranged from 2.1–134.9 while the organic carbon-normalized Freundlich sorption capacity values, K foc, ranged from 1.28–3.53 mg kg?1-OC/(mg L?1)n. Infrared Fourier transform spectroscopy (FTIR) of the components showed significant structural differences. The results suggest that the presence of the oxides and hydroxides iron, in particular in soil solutions, enhanced GPS adsorption. They also suggest that reduction in OC% due to various treatments may enhance the remobilization of GPS into the aqueous phase (i.e., groundwater), though at different rates. Comparatively, contribution of surface area to the adsorption of GPS on the various components proved more significant than contents of organic carbon.  相似文献   
2.
The adsorption of atrazine onto untreated and soils when oxides and hydroxides of Fe, Mn, and organic matter have been reduced was studied under aerobic and anoxic conditions. The Freundlich model appeared to fit the isotherm data better than the Langmuir model, while second-order reaction rates were best fit for atrazine in the aqueous phase. Simple regression analysis indicated that the Fe content of the geosorbents is the most important primary factor controlling the sorption processes of atrazine (r2 = 0.947). Similar sorption capacity of atrazine by geosorbents but different isotherm nonlinearity indicated different sorption domains due to structural modifications and hydrophobicity. The sample treated to significantly remove organic carbon exhibited the greatest organic carbon–normalized sorption capacity. There existed apparent sorption–desorption hysteresis for each sorbent–sorbate system with desorption being more significant under anoxic conditions. The study suggests that, in remediation exercise, in situ redox barriers such as Fe2+-enriched zones can be created by stimulation of Fe3+ through chemical reduction. This study observed that soil predominated by Fe and with low OC content is probably a more effective sorbent for atrazine, implying that atrazine applied to such soils is less likely to leach into groundwater.  相似文献   
3.
Archives of Microbiology - The study focused on the production of wine from date palm fruits (Phoenix dactylifera L.) using a strain of yeast isolated from selected Nigerian locally fermented...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号