首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2012年   1篇
  2008年   5篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2001年   2篇
  2000年   3篇
  1984年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Two soluble post-proline cleaving peptidase activities, PPCP1 and PPCP2, were demonstrated in Tenebrio molitor larval midgut with the substrate benzyloxycarbonyl-L-alanyl-L-proline p-nitroanilide. Both activities were serine peptidases. PPCP1 was active in acidic buffers, with maximum activity at pH 5.3, and was located mainly in the more acidic anterior midgut lumen. The dynamics of PPCP1 activity and the total activity of soluble digestive peptidases in the course of food digestion were similar, suggesting that the enzyme participates in protein digestion. PPCP2 is a nondigestive soluble tissue enzyme evenly distributed along the midgut. An increase in the activity of PPCP2 was observed in buffers of pH 5.6-8.6 and was maximal at pH 7.4. The sensitivity of PPCP2 to inhibitors and the effect of pH are similar to prolyl oligopeptidases with a cysteine residue near the substrate binding site.  相似文献   
2.
Subtilisin 72 was immobilized on cryogel of poly(vinyl alcohol), the macroporous carrier prepared by the freeze-thaw-treatment of concentrated aqueous solution of the polymer. The obtained biocatalyst was active and stable in aqueous, aqueous-organic, as well as in low water media. The stability of immobilized biocatalyst was substantially higher than that of native enzyme in all mixtures especially in aqueous buffer containing 5–8 M Urea and in acetonitrile/60–90%DMF mixtures. The ability of native and immobilized subtilisin to catalyze peptide bond formation between Z-Ala-Ala-Leu-OMe and Phe-pNA was studied in non-aqueous media. Considerable enzyme stabilization in acetonitrile/90%DMF mixture, induced by the immobilization, resulted in higher product yield (57%) than in case of native subtilisin suspension (32%). Detailed study of synthesis reaction revealed that notable increase in product yield could be reached using increase in both substrate concentrations up to 200 mM.  相似文献   
3.
Subtilisin Carlsberg (SC) was shown to catalyze the solid phase segment coupling of peptides in complex with sodium dodecyl sulfate (SDS) in an organic medium on Aminosilochrom and polyvinyl alcohol (PVA) cryogel activated with glutaraldehyde or divinylsulfone. Diamines of different lengths with a general formula NH2-(CH2) n -NH2 (n = 2, 4, and 6) were used as spacers between the PVA cryogel and the peptide. A model reaction of enzymatic attachment of the Dnp-Ala-Ala-Leu-OMe tripeptide to the PVA cryogel was carried out by treatment with the SDS-SC complex in a mixture of anhydrous ethanol and DMSO (7 : 3, v/v) using a tenfold excess of the carboxyl component. The molar enzyme-substrate ratio was 1 : 88. The effect of the method of matrix activation, length of a spacer, and reaction time on the coupling efficiency was studied. Hexamethylenediamine was found to be the most effective spacer for the enzymatic coupling on the PVA cryogel activated with glutaraldehyde (the reaction proceeded with the highest yield of 60%). The reaction efficiency was considerably lower in the case of ethylenediamine and tetramethylenediamine (10 and 15%, respectively). The best results were obtained on the PVA cryogel activated by divinylsulfone with hexamethylenediamine as a spacer. A two-step condensation of tripeptides was carried out on this support. The second step of condensation was shown to proceed better (in 85% yield) in comparison with the first step (37% yield).  相似文献   
4.
L-Pyroglutamyl-L-phenylalanyl-L-leucine-p-nitroanilide (PFLNA)--a convenient chromogenic substrate for assay of thiol proteinases papain, ficin, and bromelain--was prepared by enzymatic synthesis with chymotrypsin as a catalyst. The thiol proteinases hydrolyze PFLNA with the liberation of p-nitroaniline, estimated spectrophotometrically by its absorbance at 410 nm. The phenylalanine residue in the P2 position of PFLNA meets the specificity demands of thiol proteinases. The following values of Km were found for PFLNA hydrolysis: by papain, 0.34 mM; by ficin, 0.43 mM; by bromelain, 0.30 mM. This substrate was successfully applied to monitor thiol proteinase affinity chromatography on bacitracin-Sepharose, which resulted in a 2- to 4-fold purification from commercial preparations.  相似文献   
5.
The activity and stability of native subtilisin Karlsberg and subtilisin 72 and their complexes with sodium dodecyl sulfate (SDS) in organic solvents were studied. The kinetic constants of the hydrolysis of specific chromogenic peptide substrates Z-Ala-Ala-Leu-pNA and Glp-Ala-Ala-Leu-pNA by the subtilisins were determined. It was found that the subtilisin Karlsberg complex with SDS in anhydrous organic solvents is an effective catalyst of peptide synthesis with multifunctional amino acids in positions P 1 and P 1 (Glu, Arg, and Asp) containing unprotected side ionogenic groups.  相似文献   
6.
A chemoenzymatic synthesis was developed for new highly specific fluorogenic substrates for cysteine proteases of the papain family, Abz-Phe-Ala-pNA (I) and Glp-Phe-Ala-Amc (II) (Abz, pNA, Glp, and Amc are o-aminobenzoyl, p-nitroanilide, pyroglutamyl, and 4-amino-7-methylcoumaride, respectively). Substrate (I) was obtained in an aqueous-organic medium using native chymotrypsin. Substrate (II) was synthesized in DMF-MeCN by the treatment with chymotrypsin and subtilisin Carlsberg immobilized on polyvinyl alcohol cryogel. Hydrolysis of substrate (I) with papain, ficin, and bromelain was accompanied by a 15-fold increase in fluorescence intensity, and that of substrate (II), by a change in the fluorescence spectrum. Unambiguity of enzymatic hydrolysis of the substrates after the Ala residue was shown. The specific activity of the substrate hydrolysis with papain, bromelain, and ficin and was determined. Papain showed the greatest activity for both substrates. The activity of all proteases under study was essentially higher for substrate (II), than for substrate (I). The lowest detectable papain concentrations were 2.4 × 10?10 M for (I) and 1.2 × 10?11 M for (II). A high selectivity of cysteine proteases for Glp-Phe-Ala-Amc was established.  相似文献   
7.
The segment condensation of peptides on a solid phase (Aminosilochrom) in organic medium catalyzed by a subtilisin complex with sodium dodecylsulfate was studied. The dependence of the efficiency of the enzymatic coupling of tripeptides with the basic structure X-Ala-Ala-Y-OMe [where X = Z, Boc, or Dnp and Y = Leu or Glu(OMe)] on the spacer (Phe-Met-Gly-Gly) content on the support and on the structure of the acylating component was investigated. The tripeptide segments were successively coupled to Aminosilochrom containing the Met-Ala-Gly spacer, and the peptidylaminosilochroms Dnp-Ala-Ala-Leu-Ala-Ala-Leu-Ala-Ala-Glu(OMe)-Met-Ala-Gly-Aand Dnp-Ala-Ala-Leu-Ala-Ala-Glu(OMe)-Ala-Ala-Leu-Met-Ala-Gly-A(Ais the Aminosilochrom residue) were obtained in satisfactory yields. It was shown by these examples that the second and third segments are attached in yields higher than that for the first segment and the coupling efficiency does not depend on the amino acid composition of the acylating component.  相似文献   
8.
The catalytic efficiencies of native subtilisin, its noncovalent complex with polyacrylic acid, and the subtilisin covalently immobilized in a cryogel of polyvinyl alcohol were studied in the reaction of peptide coupling in mixtures of organic solvents with a low water content in dependence on the medium composition, reaction time, and biocatalyst concentration. It was established that, in media with a DMF content >80%, the synthase activity of modified subtilisins is higher than that of the native subtilisin. The use of N-acylpeptides with a free carboxyl group was found to be possible in organic solvents during the enzymatic synthesis catalyzed by both native and immobilized subtilisin. A series of tetrapeptide p-nitroanilides of the general formula Z-Ala-Ala-Xaa-Yaa-pNA (where Xaa is Leu, Lys, or Glu and Yaa is Phe or Asp) was obtained in the presence of immobilized enzyme in yields of 70–98% in DMF–MeCN without any activation of the carboxyl component and without protection of side ionogenic groups of polyfunctional amino acids.  相似文献   
9.
Preparations with different contents of thermolysin were obtained by the immobilization of the enzyme on granulated polyvinyl alcohol cryogel. Their activity and stability in an aqueous medium and in mixtures of polar organic solvents of different composition were investigated. The catalytic properties of the preparations in reactions of peptide bond formation were studied, and the optimal amount of the biocatalyst, the concentrations of initial reagents, and the ratios of organic solvents and water necessary for effective enzymatic peptide synthesis catalyzed by immobilized thermolysin were determined. A series of peptides of the general formula Z-Ala-Ala-Xaa-pNA, where Xaa = Leu, Ile, Phe, Val, or Ala, were synthesized, and the immobilized enzyme was shown to retain substrate specificity in an organic medium.  相似文献   
10.
The major storage proteins in cereals, prolamins, have an abundance of the amino acids glutamine and proline. Storage pests need specific digestive enzymes to efficiently hydrolyze these storage proteins. Therefore, post-glutamine cleaving peptidases (PGP) were isolated from the midgut of the stored-product pest, Tenebrio molitor (yellow mealworm). Three distinct PGP activities were found in the anterior and posterior midgut using the highly-specific chromogenic peptide substrate N-benzyloxycarbonyl-L-Ala-L-Ala-L-Gln p-nitroanilide. PGP peptidases were characterized according to gel elution times, activity profiles in buffers of different pH, electrophoretic mobility under native conditions, and inhibitor sensitivity. The results indicate that PGP activity is due to cysteine and not serine chymotrypsin-like peptidases from the T. molitor larvae midgut. We propose that the evolutionary conservation of cysteine peptidases in the complement of digestive peptidases of tenebrionid stored-product beetles is due not only to the adaptation of insects to plants rich in serine peptidase inhibitors, but also to accommodate the need to efficiently cleave major dietary proteins rich in glutamine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号