首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  47篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1997年   3篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   5篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
  1972年   1篇
  1966年   1篇
  1944年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
2.
In many species systemic toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is manifested by a generalized wasting syndrome accompanied by a variety of specific organ changes including atrophy of the thymus and spleen. TCDD toxicity in most tissues is thought to be mediated by the Ah receptor. Although the spleen is a prime target for TCDD toxicity, the possible presence of Ah receptor in the spleen has not previously been investigated. Specific binding of [3H]TCDD to Ah receptor in spleen cytosols was assessed by velocity sedimentation on sucrose gradients. Ah receptor was detected in spleen cytosols from adult Rhesus monkeys (mean +/- SEM, 36 +/- 8 fmol/mg cytosol protein), fetal Rhesus monkeys (9 +/- 6), Sprague-Dawley rats (20 +/- 5), C57BL/6J mice (18 +/- 2), New Zealand white rabbits (19 +/- 2), and Hartley guinea pigs (15 +/- 2). Ah receptor was not detectable in spleen cytosol from genetically "nonresponsive" DBA/2J mice or from Golden Syrian hamsters, a species resistant to toxicity of TCDD. Molecular properties of Ah receptor from spleen were similar to those of the receptor from liver of the same species. The high Ah receptor content in spleen cytosols from those species that are most susceptible to TCDD toxicity is consistent with the view that the Ah receptor mediates TCDD toxicity in spleen as well as in other tissues.  相似文献   
3.
C3H/1OT1/2 clone 8 mouse fibroblasts (C3H/1OT1/2 cells) exhibit induction of aryl hydrocarbon hydroxylase (cytochrome P1-450) when exposed in culture to benzo(a)pyrene, benz(a)anthracene or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but do not display the induction response when treated with 3-methylcholanthrene (MCA), the classical inducer of cytochrome P1-450. Induction of cytochrome P1-450 is regulated by the Ah receptor which initially binds inducing chemicals in the cytoplasm, after which the inducer x receptor complex translocates into the nucleus. Cytosolic and nuclear forms of the Ah receptor can be detected in C3H/1OT1/2 cells using [3H]TCDD as the radioligand in culture, but specific Ah receptor binding is not detectable within C3H/1OT1/2 cells incubated with [3H]MCA. In contrast, in Hepa-1c1 cells, which exhibit cytochrome P1-450 induction when treated with MCA, cytosolic and nuclear Ah receptor can be detected by incubation of the cells either with [3H]MCA or with [3H]TCDD. Nonradioactive MCA is able to compete with [3H]TCDD for Ah receptor sites in C3H/1OT1/2 cells, but the relative potency of MCA as a competitor is lower within C3H/1OT1/2 cells than in C3H/1OT1/2 cytosol during extracellular incubation. Specific binding of [3H]MCA to Ah receptor can be detected by incubation of [3H]MCA with C3H/1OT1/2 cytosol outside the cell. The selective loss of response to MCA as a cytochrome P1-450 inducer (while retaining response to other inducers) appears to be due to defective interaction of MCA with the Ah receptor within the intracellular environment. The specific molecular alteration which makes the MCA x receptor complex ineffective within C3H/1OT1/2 cells is unknown. Some fibroblast lines other than C3H/1OT1/2 also selectively fail to respond to MCA; thus, this variation in Ah receptor function may not be due to a mutational change in the Ah regulatory gene which codes for the Ah receptor.  相似文献   
4.
5.
6.
7.
8.
9.
10.
Climate change and ocean acidification are altering marine ecosystems and, from a human perspective, creating both winners and losers. Human responses to these changes are complex, but may result in reduced government investments in regulation, resource management, monitoring and enforcement. Moreover, a lack of peoples’ experience of climate change may drive some towards attributing the symptoms of climate change to more familiar causes such as management failure. Taken together, we anticipate that management could become weaker and less effective as climate change continues. Using diverse case studies, including the decline of coral reefs, coastal defences from flooding, shifting fish stocks and the emergence of new shipping opportunities in the Arctic, we argue that human interests are better served by increased investments in resource management. But greater government investment in management does not simply mean more of “business‐as‐usual.” Management needs to become more flexible, better at anticipating and responding to surprise, and able to facilitate change where it is desirable. A range of technological, economic, communication and governance solutions exists to help transform management. While not all have been tested, judicious application of the most appropriate solutions should help humanity adapt to novel circumstances and seek opportunity where possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号