首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2017年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
Enterohemorrhagic Escherichia coli (EHEC), causes a potentially life-threatening infection in humans worldwide. Serovar O157:H7, and to a lesser extent serovars O26 and O111, are the most commonly reported EHEC serovars responsible for a large number of outbreaks. We have established a rapid discrimination method for E. coli serovars O157, O26 and O111 from other E. coli serovars, based on the pattern matching of mass spectrometry (MS) differences and the presence/absence of biomarker proteins detected in matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF MS). Three biomarkers, ribosomal proteins S15 and L25, and acid stress chaperone HdeB, with MS m/z peaks at 10138.6/10166.6, 10676.4/10694.4 and 9066.2, respectively, were identified as effective biomarkers for O157 discrimination. To distinguish serovars O26 and O111 from the others, DNA-binding protein H-NS, with an MS peak at m/z 15409.4/15425.4 was identified. Sequence analysis of the O157 biomarkers revealed that amino acid changes: Q80R in S15, M50I in L25 and one mutation within the start codon ATG to ATA in the encoded HdeB protein, contributed to the specific peak pattern in O157. We demonstrated semi-automated pattern matching using these biomarkers and successfully discriminated total 57 O157 strains, 20 O26 strains and 6 O111 strains with 100% reliability by conventional MALDI-TOF MS analysis, regardless of the sample conditions. Our simple strategy, based on the S10-spc-alpha operon gene-encoded ribosomal protein mass spectrum (S10-GERMS) method, therefore allows for the rapid and reliable detection of this pathogen and may prove to be an invaluable tool both clinically and in the food industry.  相似文献   
2.

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based microbial identification is a popular analytical method. Strain Solution proteotyping software available for MALDI-TOF MS has great potential for the precise and detailed discrimination of microorganisms at serotype- or strain-level, beyond the conventional mass fingerprinting approaches. Here, we constructed a theoretically calculated mass database of Salmonella enterica subspecies enterica consisting of 12 biomarker proteins: ribosomal proteins S8, L15, L17, L21, L25, and S7, Mn-cofactor-containing superoxide dismutase (SodA), peptidyl-prolyl cis-trans isomerase C (PPIase C), and protein Gns, and uncharacterized proteins YibT, YaiA, and YciF, that can allow serotyping of Salmonella. Strain Solution ver. 2 software with the novel database constructed in this study demonstrated that 109 strains (94%), including the major outbreak-associated serotypes, Enteritidis, Typhimurium, and Infantis, could be correctly identified from others by colony-directed MALDI-TOF MS using 116 strains belonging to 23 kinds of typed and untyped serotypes of S. enterica from culture collections, patients, and foods. We conclude that Strain Solution ver. 2 software integrated with the accurate mass database will be useful for the bacterial proteotyping by MALDI-TOF MS-based microbial classification in the clinical and food safety fields.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号