首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2014年   1篇
  1998年   1篇
  1989年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Myocardial hibernation, as first defined by Rahimtoola, is a state of chronic contractile dysfunction in patients with coronary artery disease which is fully reversible upon reperfusion. Clinical conditions consistent with the existence of myocardial hibernation include unstable and stable angina, myocardial infarction heart failure, and anomalous origin of coronary arteries. The mechanisms of hibernation are not known. Morphological alterations have been described in the hibernating area of patients, but these information are strongly affected by the diagnostic criteria utilized to screen patients. It has been postulated that hibernation is an adaptive phenomenon occurring during ischemia. In this context, downregulation of contraction is not regarded as a consequence of energetic deficit, but as a regulatory event aimed at reducing energy expenditure, thereby maintaining integrity and viability. Thus, hibernation might bear a relationship to the phenomenon of low-flow perfusion-contraction matching, or repetitive stunning or preconditioning. Clear-cut evidence for the mechanism of hibernation in the clinical setting seems likely to remain elusive, because of the nature of the studies needed to document it. Current experimental evidence supports the view that hibernation, stunning, preconditioning, or their coexistence can be responsible for regional myocardial contractile dysfunction which is reversible upon reperfusion. These are all adaptive and protective phenomena independent of their terminology and strict definitions and do not always apply to the extremely complex situation of myocardial ischemia in man.  相似文献   
2.
Summary Reperfusion of isolated rabbit heart after 60 min of ischaemia resulted in poor recovery of mechanical function, release of reduced (GSH) and oxidized glutathione (GSSG), reduction of tissue GSH/GSSG ratio and shift of cellular thiol redox state toward oxidation, suggesting the occurrence of oxidative stress. Pretreatment of the isolated heart with propionyl-L-carnitine (10–7M) improved the functional recovery of the myocardium, reduced GSH and GSSG release and attenuated the accumulation of tissue GSSG. This effect was specific for propionyl-L-carnitine as L-carnitine and propionyl acid did not modify myocardial damage.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号