首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   6篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   7篇
  2011年   7篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
  1983年   1篇
  1977年   1篇
排序方式: 共有67条查询结果,搜索用时 31 毫秒
1.
Abstract In haplodiploid Hymenoptera, unfertilized eggs produce haploid males while fertilized eggs lead to diploid females under most circumstances. Diploid males can also be produced from fertilization under a system of sex determination known as complementary sex determination (CSD). Under single-locus CSD, sex is determined by multiple alleles at a single sex locus. Individuals heterozygous at the sex locus are female while hemizygous and homozygous individuals develop as haploid and diploid males, respectively. In multiple-locus CSD, two or more loci, each with two or more alleles, determine sex. Diploid individuals are female if one or more sex loci are heterozygous, while a diploid is male only if homozygous at all sex loci. Diploid males are known to occur in 43 hymenopteran species and single-locus CSD has been demonstrated in 22 of these species. Diploid males are either developmentally inviable or sterile, so their production constitutes a genetic load. Because diploid male production is more likely under inbreeding, CSD is a form of inbreeding depression. It is crucial to preserve the diversity of sex alleles and reduce the loss of genetic variation in biological control. In the parasitoid species with single-locus CSD, certain precautionary procedures can prevent negative effects of single-locus CSD on biological control.  相似文献   
2.
Plasma uric acid (UA) levels decrease following clinical progression and stage development of Parkinson’s disease (PD). However, the molecular mechanisms underlying decreases in plasma UA levels remain unclear, and the potential to apply mutagenesis to a PD model has not previously been discovered. We identified a unique mutant of the silkworm Bombyx mori (B.mori) op. Initially, we investigated the causality of the phenotypic “op” by microarray analysis using our constructed KAIKO functional annotation pipeline. Consequently, we found a novel UA synthesis-modulating pathway, from DJ-1 to xanthine oxidase, and established methods for large-scale analysis of gene expression in B. mori. We found that the mRNA levels of genes in this pathway were significantly lower in B. mori op mutants, indicating that downstream events in the signal transduction cascade might be prevented. Additionally, levels of B.mori tyrosine hydroxylase (TH) and DJ-1 mRNA were significantly lower in the brain of B. mori op mutants. UA content was significantly lower in the B. mori op mutant tissues and hemolymph. The possibility that the B. mori op mutant might be due to loss of DJ-1 function was supported by the observed vulnerability to oxidative stress. These results suggest that UA synthesis, transport, elimination and accumulation are decreased by environmental oxidative stress in the B. mori op mutant. In the case of B. mori op mutants, the relatively low availability of UA appears to be due both to the oxidation of DJ-1 and to its expenditure to mitigate the effects of environmental oxidative stress. Our findings are expected to provide information needed to elucidate the molecular mechanism of decreased plasma UA levels in the clinical stage progression of PD.  相似文献   
3.
Human immunodeficiency virus type 1 (HIV-1) replication in macaque cells is restricted mainly by antiviral cellular APOBEC3, TRIM5α/TRIM5CypA, and tetherin proteins. For basic and clinical HIV-1/AIDS studies, efforts to construct macaque-tropic HIV-1 (HIV-1mt) have been made by us and others. Although rhesus macaques are commonly and successfully used as infection models, no HIV-1 derivatives suitable for in vivo rhesus research are available to date. In this study, to obtain novel HIV-1mt clones that are resistant to major restriction factors, we altered Gag and Vpu of our best HIV-1mt clone described previously. First, by sequence- and structure-guided mutagenesis, three amino acid residues in Gag-capsid (CA) (M94L/R98S/G114Q) were found to be responsible for viral growth enhancement in a macaque cell line. Results of in vitro TRIM5α susceptibility testing of HIV-1mt carrying these substitutions correlated well with the increased viral replication potential in macaque peripheral blood mononuclear cells (PBMCs) with different TRIM5 alleles, suggesting that the three amino acids in HIV-1mt CA are involved in the interaction with TRIM5α. Second, we replaced the transmembrane domain of Vpu of this clone with the corresponding region of simian immunodeficiency virus SIVgsn166 Vpu. The resultant clone, MN4/LSDQgtu, was able to antagonize macaque but not human tetherin, and its Vpu effectively functioned during viral replication in a macaque cell line. Notably, MN4/LSDQgtu grew comparably to SIVmac239 and much better than any of our other HIV-1mt clones in rhesus macaque PBMCs. In sum, MN4/LSDQgtu is the first HIV-1 derivative that exhibits resistance to the major restriction factors in rhesus macaque cells.  相似文献   
4.
All organisms ensure once and only once replication during S phase through a process called replication licensing. Cdt1 is a key component and crucial loading factor of Mcm complex, which is a central component for the eukaryotic replicative helicase. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent rereplication. Here, we address the mechanism of DNA licensing using purified Cdt1, Mcm and Geminin proteins in combination with replication in Xenopus egg extracts. We mutagenized the 223th arginine of mouse Cdt1 (mCdt1) to cysteine or serine (R-S or R-C, respectively) and 342nd and 346th arginines constituting an arginine finger-like structure to alanine (RR-AA). The RR-AA mutant of Cdt1 could not only rescue the DNA replication activity in Cdt1-depleted extracts but also its specific activity for DNA replication and licensing was significantly increased compared to the wild-type protein. In contrast, the R223 mutants were partially defective in rescue of DNA replication and licensing. Biochemical analyses of these mutant Cdt1 proteins indicated that the RR-AA mutation disabled its functional interaction with Geminin, while R223 mutations resulted in ablation in interaction with the Mcm2~7 complex. Intriguingly, the R223 mutants are more susceptible to the phosphorylation-induced inactivation or chromatin dissociation. Our results show that conserved arginine residues play critical roles in interaction with Geminin and Mcm that are crucial for proper conformation of the complexes and its licensing activity.  相似文献   
5.
This paper presents a data-flexible indicator framework for analysis of visual landscape character; the VisuLands framework. The theory-based framework encompasses currently used indicators for visual assessment based on four different data sources: land cover data, aerial photographs, landscape photographs and field observations. This paper presents a study applying the VisuLands framework in analysis of landscape change and its effect on visual scale in a landscape in Southeast Sweden. The paper provides a critical assessment of the pros and cons of the approach. It identifies the advantages and disadvantages of using different data sources as well as the applicability and sensitivity of existing indicators in detecting visible landscape change. The results show that while some of the VisuLands indicators are relatively easily applied, others are more complex and demanding in terms of interpretation. The flexibility of the VisuLands framework makes it applicable and user-friendly as it helps meet the requirements and restrictions of the users. The assessment has shown that the different data sources complement each other and that applying indicators using various data sources, when available, will enhance the comprehensiveness of visual landscape assessment. The experience of this study is that the VisuLands framework is a useful tool in landscape analysis, monitoring and planning, which provides a repeatable, systematic and transparent approach with strong links to landscape theory.  相似文献   
6.
A prominent characteristic of human immunodeficiency virus type 1 (HIV-1) is its high genetic variability, which generates diversity of the virus and often causes a serious problem of the emergence of drug-resistant mutants. Subtype B HIV-1 is dominant in advanced countries, and the mortality rate due to subtype B HIV-1 has been decreased during the past decade. In contrast, the number of patients with non-subtype B viruses is still increasing in developing countries. One of the reasons for the prevalence of non-subtype B viruses is lack of information about the biological and therapeutic differences between subtype B and non-subtype B viruses. M36I is the most frequently observed polymorphism in non-subtype B HIV-1 proteases. However, since the 36th residue is located at a non-active site of the protease and has no direct interaction with any ligands, the structural role of M36I remains unclear. Here, we performed molecular dynamics (MD) simulations of M36I protease in complex with nelfinavir and revealed the influence of the M36I mutation. The results show that M36I regulates the size of the binding cavity of the protease. The reason for the rare emergence of D30N variants in non-subtype B HIV-1 proteases was also clarified from our computational analysis.  相似文献   
7.
8.
BACKGROUND: Interleukin-13 (IL-13), a TH2 cytokine, upregulates the expression of vascular cell adhesion molecule-1 on endothelial cells, a factor involved in vasoocclusion in sickle cell disease (SCD). Hydroxyurea improves clinical status of SCD patients in part by induction of fetal hemoglobin. Its effect on IL-13 secretion has not been investigated. OBJECTIVE: To determine whether hydroxyurea and zileuton, a hydroxyurea derivative with antiinflammatory properties, affect IL-13 secretion. METHODS: We measured IL-13 in the supernatant of murine spleen cells incubated without and with hydroxyurea, zileuton (10 microg/ml), concanavalin A (2.5 microg/ml), and anti-CD3 (50 ng/ml) (n=8). RESULTS: Hydroxyurea and zileuton do not affect baseline IL-13 secretion. Unexpectedly, hydroxyurea increases IL-13 levels above baseline (120%, 216.5%, [p<0.05] after 24 h and 48 h, respectively) in lymphocytes activated by anti-CD3, while zileuton reduces them by 59%-78% (p<0.005). In lymphocytes activated by concanavalin A, hydroxyurea and zileuton reduce IL-13 secretion by 24-36% and 50-87%, respectively (p<0.05). Hydroxyurea, but not zileuton, significantly inhibits spleen cell proliferative responses to mitogens (p<0.005). CONCLUSION: Data suggest that hydroxyurea up-regulates IL-13 secretion in anti-CD3-activated lymphocytes through gene activation but not by altered cell proliferation. Increased IL-13 secretion may contribute to unresponsiveness of certain SCD patients to hydroxyurea. The potential benefit of zileuton in the management of vasoocclusion is discussed.  相似文献   
9.
Norovirus GII/4 is a leading cause of acute viral gastroenteritis in humans. We examined here how the GII/4 virus evolves to generate and sustain new epidemics in humans, using 199 near-full-length GII/4 genome sequences and 11 genome segment clones from human stool specimens collected at 19 sites in Japan between May 2006 and February 2009. Phylogenetic studies demonstrated outbreaks of 7 monophyletic GII/4 subtypes, among which a single subtype, termed 2006b, had continually predominated. Phylogenetic-tree, bootscanning-plot, and informative-site analyses revealed that 4 of the 7 GII/4 subtypes were mosaics of recently prevalent GII/4 subtypes and 1 was made up of the GII/4 and GII/12 genotypes. Notably, single putative recombination breakpoints with the highest statistical significance were constantly located around the border of open reading frame 1 (ORF1) and ORF2 (P ≤ 0.000001), suggesting outgrowth of specific recombinant viruses in the outbreaks. The GII/4 subtypes had many unique amino acids at the time of their outbreaks, especially in the N-term, 3A-like, and capsid proteins. Unique amino acids in the capsids were preferentially positioned on the outer surface loops of the protruding P2 domain and more abundant in the dominant subtypes. These findings suggest that intersubtype genome recombination at the ORF1/2 boundary region is a common mechanism that realizes independent and concurrent changes on the virion surface and in viral replication proteins for the persistence of norovirus GII/4 in human populations.Norovirus (NoV) is a nonenveloped RNA virus that belongs to the family Caliciviridae and can cause acute gastroenteritis in humans. The NoV genome is a single-stranded, positive-sense, polyadenylated RNA that encodes three open reading frames, ORF1, ORF2, and ORF3 (68). ORF1 encodes a long polypeptide (∼200 kDa) that is cleaved in the cells by the viral proteinase (3Cpro) into six proteins (4). These proteins function in NoV replication in host cells (19). ORF2 encodes a viral capsid protein, VP1. The capsid gene evolved at a rate of 4.3 × 10−3 nucleotide substitutions/site/year (7), which is comparable to the substitution rates of the envelope and capsid genes of human immunodeficiency virus (30). The capsid protein of NoV consists of a shell (S) and two protruding (P) domains: P1 and P2 (47). The S domain is relatively conserved within the same genetic lineages of NoVs (38) and is responsible for the assembly of VP1 (6). The P1 subdomain is also relatively conserved (38) and has a role in enhancing the stability of virus particles (6). The P2 domain is positioned at the most exposed surface of the virus particle (47) and forms binding clefts for putative infection receptors, such as human histo-blood group antigens (HBGA) (8, 13, 14, 60). The P2 domain also contains epitopes for neutralizing antibodies (27, 33) and is consistently highly variable even within the same genetic lineage of NoVs (38). ORF3 encodes a VP2 protein that is suggested to be a minor structural component of virus particles (18) and to be responsible for the expression and stabilization of VP1 (5).Thus far, the NoVs found in nature are classified into five genogroups (GI to GV) and multiple genotypes on the basis of the phylogeny of capsid sequences (71). Among them, genogroup II genotype 4 (GII/4), which was present in humans in the mid-1970s (7), is now the leading cause of NoV-associated acute gastroenteritis in humans (54). The GII/4 is further subclassifiable into phylogenetically distinct subtypes (32, 38, 53). Notably, the emergence and spread of a new GII/4 subtype with multiple amino acid substitutions on the capsid surface are often associated with greater magnitudes of NoV epidemics (53, 54). In 2006 and 2007, a GII/4 subtype, termed 2006b, prevailed globally over preexisting GII/4 subtypes in association with increased numbers of nonbacterial acute gastroenteritis cases in many countries, including Japan (32, 38, 53). The 2006b subtype has multiple unique amino acid substitutions that occur most preferentially in the protruding subdomain of the capsid, the P2 subdomain (32, 38, 53). Together with information on human population immunity against NoV GII/4 subtypes (12, 32), it has been postulated that the accumulation of P2 mutations gives rise to antigenic drift and plays a key role in new epidemics of NoV GII/4 in humans (32, 38, 53).Genetic recombination is common in RNA viruses (67). In NoV, recombination was first suggested by the phylogenetic analysis of an NoV genome segment clone: a discordant branching order was noted with the trees of the 3Dpol and capsid coding regions (21). Subsequently, many studies have reported the phylogenetic discordance using sequences from various epidemic sites in different study periods (1, 10, 11, 16, 17, 22, 25, 40, 41, 44-46, 49, 51, 57, 63, 64, 66). These results suggest that genome recombination frequently occurs among distinct lineages of NoV variants in vivo. However, the studies were done primarily with direct sequencing data of the short genome portion, and information on the cloned genome segment or full-length genome sequences is very limited (21, 25). Therefore, we lack an overview of the structural and temporal dynamics of viral genomes during NoV epidemics, and it remains unclear whether NoV mosaicism plays a role in these events.To clarify these issues, we collected 199 near-full-length genome sequences of GII/4 from NoV outbreaks over three recent years in Japan, divided them into monophyletic subtypes, analyzed the temporal and geographical distribution of the subtypes, collected phylogenetic evidence for the viral genome mosaicism of the subtypes, identified putative recombination breakpoints in the genomes, and isolated mosaic genome segments from the stool specimens. We also performed computer-assisted sequence and structural analyses with the identified subtypes to address the relationship between the numbers of P2 domain mutations at the times of the outbreaks and the magnitudes of the epidemics. The obtained data suggest that intersubtype genome recombination at the ORF1/2 boundary region is common in the new GII/4 outbreaks and promotes the effective acquisition of mutation sets of heterogeneous capsid surface and viral replication proteins.  相似文献   
10.
We have previously shown that DNA polymerase epsilon (Pol epsilon)of Saccharomyces cerevisiae binds stably to double-stranded DNA (dsDNA), a property not generally associated with DNA polymerases. Here, by reconstituting Pol epsilon activity from Pol2p-Dpb2p and Dpb3p-Dpb4p, its two component subassemblies, we report that Dpb3p-Dpb4p, a heterodimer of histone-fold motif-containing subunits, is responsible for the dsDNA binding. Substitution of specific lysine residues in Dpb3p, highlighted by homology modeling of Dpb3p-Dpb4p based on the structure of the histone H2A-H2B dimer, indicated that they play roles in binding of dsDNA by Dpb3p-Dpb4p, in a manner similar to the histone-DNA interaction. The lysine-substituted dpb3 mutants also displayed reduced telomeric silencing, whose degree paralleled that of the dsDNA-binding activity of Pol epsilon in the corresponding dpb3 mutants. Furthermore, additional amino acid substitutions to lysines in Dpb4p, to compensate for the loss of positive charges in the Dpb3p mutants, resulted in simultaneous restoration of dsDNA-binding activity by Pol epsilon and telomeric silencing. We conclude that the dsDNA-binding property of Pol epsilon is required for epigenetic silencing at telomeres.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号