全文获取类型
收费全文 | 85篇 |
免费 | 8篇 |
国内免费 | 1篇 |
专业分类
94篇 |
出版年
2022年 | 1篇 |
2021年 | 1篇 |
2020年 | 2篇 |
2018年 | 1篇 |
2017年 | 3篇 |
2016年 | 1篇 |
2015年 | 1篇 |
2014年 | 4篇 |
2013年 | 3篇 |
2012年 | 6篇 |
2011年 | 6篇 |
2010年 | 6篇 |
2009年 | 6篇 |
2008年 | 4篇 |
2007年 | 3篇 |
2006年 | 3篇 |
2005年 | 4篇 |
2004年 | 2篇 |
2003年 | 8篇 |
2002年 | 5篇 |
2001年 | 2篇 |
2000年 | 3篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1869年 | 1篇 |
排序方式: 共有94条查询结果,搜索用时 0 毫秒
1.
Michael D Kennedy Mark J Haykowsky Carol A Boliek Ben TA Esch Jessica M Scott Darren ER Warburton 《Dynamic medicine : DM》2006,5(1):8
Background
Near infrared spectroscopy (NIRS) is used to assess muscle oxygenation (MO) within skeletal muscle at rest and during aerobic exercise. Previous investigations have used a single probe placement to measure MO during various forms of exercise. However, regional MO differences have been shown to exist within the same muscle which suggests that different areas of the same muscle may have divergent MO. Thus, the aim of this study was to examine whether regional differences in MO exist within the same muscle during different types of incremental (rest, 25, 50, 75, 100 % of maximum) exercise (1 leg knee extension (KE), 2 leg KE, or cycling).Methods
Nineteen healthy active males (Mean ± SD: Age 27 ± 4 yrs; VO2max: 55 ± 11 mL/kg/min) performed incremental exercise to fatigue using each mode of exercise. NIRS probes were placed on the distal and proximal portion of right leg vastus lateralis (VL). Results were analyzed with a 3-way mixed model ANOVA (probe × intensity × mode).Results
Differences in MO exist within the VL for each mode of exercise, however these differences were not consistent for each level of intensity. Comparison of MO revealed that the distal region of VL was significantly lower throughout KE exercise (1 leg KE proximal MO – distal MO = 9.9 %; 2 leg KE proximal MO – distal MO = 13 %). In contrast, the difference in MO between proximal and distal regions of VL was smaller in cycling and was not significantly different at heavy workloads (75 and 100 % of maximum).Conclusion
MO is different within the same muscle and the pattern of the difference will change depending on the mode and intensity of exercise. Future investigations should limit conclusions on MO to the area under assessment as well as the type and intensity of exercise employed.2.
3.
Oberst MD Chen LY Kiyomiya K Williams CA Lee MS Johnson MD Dickson RB Lin CY 《American journal of physiology. Cell physiology》2005,289(2):C462-C470
Hepatocyte growth factor activator inhibitor-1 (HAI-1) was initially identified as cognate inhibitor of matriptase, a membrane-bound serine protease. Paradoxically, HAI-1 is also required for matriptase activation, a process that requires sphingosine 1-phosphate (S1P)-mediated translocation of the protease to cell-cell junctions in human mammary epithelial cells. In the present study, we further explored how HAI-1 regulates this protease. First, we observed that after S1P treatment HAI-1 was cotranslocated with matriptase to cell-cell junctions and that the cellular ratio of HAI-1 to matriptase was maintained during this process. However, when this ratio was changed by cell treatment with HAI-1 small interfering RNA or anti-HAI-1 MAb M19, spontaneous activation of matriptase occurred in the absence of S1P-induced translocation; S1P-induced matriptase activation was also enhanced. These results support a role for HAI-1 in protection of cell from uncontrolled matriptase activation. We next expressed matriptase, either alone or with HAI-1 in breast cancer cells that do not endogenously express either protein. A defect in matriptase trafficking to the cell surface occurred if wild-type matriptase was expressed in the absence of HAI-1; this defect appeared to result from matriptase toxicity to cells. Coexpression with matriptase of wild-type HAI-1, but not HAI-1 mutants altered in its Kunitz domain 1, corrected the trafficking defect. In contrast, catalytically defective matriptase mutants were normal in their trafficking in the absence of HAI-1. These results are also consistent with a role for HAI-1 to prevent inappropriate matriptase proteolytic activity during its protein synthesis and trafficking. Taken together, these results support multiple roles for HAI-1 to regulate matriptase, including its proper expression, intracellular trafficking, activation, and inhibition. protease-activated receptor-2; hepatocyte growth factor; urokinase; sphingosine 1-phosphate; Kunitz domain 相似文献
4.
Activation of the RalGEF/Ral pathway promotes prostate cancer metastasis to bone 总被引:1,自引:0,他引:1
下载免费PDF全文

Yin J Pollock C Tracy K Chock M Martin P Oberst M Kelly K 《Molecular and cellular biology》2007,27(21):7538-7550
A hallmark of metastasis is organ specificity; however, little is known about the underlying signaling pathways responsible for the colonization and growth of tumor cells in target organs. Since tyrosine kinase receptor activation is frequently associated with prostate cancer progression, we have investigated the role of a common signaling intermediary, activated Ras, in prostate cancer metastasis. Three effector pathways downstream of Ras, Raf/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase, and Ral guanine nucleotide exchange factors (RalGEFs), were assayed for their ability to promote the metastasis of a tumorigenic, nonmetastatic human prostate cancer cell line, DU145. Oncogenic Ras promoted the metastasis of DU145 to multiple organs, including bone and brain. Activation of the Raf/ERK pathway stimulated metastatic colonization of the brain, while activation of the RalGEF pathway led to bone metastases, the most common organ site for prostate cancer metastasis. In addition, loss of RalA in the metastatic PC3 cell line inhibited bone metastasis but did not affect subcutaneous tumor growth. Loss of Ral appeared to suppress expansive growth of prostate cancer cells in bone, whereas homing and initial colonization were less affected. These data extend our understanding of the functional roles of the Ral pathway and begin to identify signaling pathways relevant for organ-specific metastasis. 相似文献
5.
6.
Morgan AW Robinson JI Barrett JH Martin J Walker A Babbage SJ Ollier WE Gonzalez-Gay MA Isaacs JD 《Arthritis research & therapy》2006,8(4):R109-6
The Fc gamma receptors have been shown to play important roles in the initiation and regulation of many immunological and
inflammatory processes and to amplify and refine the immune response to an infection. We have investigated the hypothesis
that polymorphism within the FCGR genetic locus is associated with giant cell arteritis (GCA). Biallelic polymorphisms in FCGR2A, FCGR3A, FCGR3B and FCGR2B were examined for association with biopsy-proven GCA (n = 85) and healthy ethnically matched controls (n = 132) in a well-characterised cohort from Lugo, Spain. Haplotype frequencies and linkage disequilibrium (D') were estimated across the FCGR locus and a model-free analysis performed to determine association with GCA. There was a significant association between
FCGR2A-131RR homozygosity (odds ratio (OR) 2.10, 95% confidence interval (CI) 1.12 to 3.77, P = 0.02, compared with all others) and carriage of FCGR3A-158F (OR 3.09, 95% CI 1.10 to 8.64, P = 0.03, compared with non-carriers) with susceptibility to GCA. FCGR haplotypes were examined to refine the extent of the association. The haplotype showing the strongest association with GCA
susceptibility was the FCGR2A-FCGR3A 131R-158F haplotype (OR 2.84, P = 0.01 for homozygotes compared with all others). There was evidence of a multiplicative joint effect between homozygosity
for FCGR2A-131R and HLA-DRB1*04 positivity, consistent with both of these two genetic factors contributing to the risk of disease. The risk of GCA in
HLA-DRB1*04 positive individuals homozygous for the FCGR2A-131R allele is increased almost six-fold compared with those with other FCGR2A genotypes who are HLA-DRB1*04 negative. We have demonstrated that FCGR2A may contribute to the 'susceptibility' of GCA in this Spanish population. The increased association observed with a FCGR2A-FCGR3A haplotype suggests the presence of additional genetic polymorphisms in linkage disequilibrium with this haplotype that may
contribute to disease susceptibility. These findings may ultimately provide new insights into disease pathogenesis. 相似文献
7.
DENG Fang-ning LIN Tao HE Wen-qing XIA Wen ZHANG Hao ER Chen CHEN Chun-fan TANG Qiu-xiang 《生态学杂志》2020,39(6):1956
8.
Christelle Benaud Michael Oberst John P Hobson Sarah Spiegel Robert B Dickson Chen-Yong Lin 《The Journal of biological chemistry》2002,277(12):10539-10546
We describe here a novel biological function of sphingosine 1-phosphate (S1P): the activation of a serine protease, matriptase. Matriptase is a type II integral membrane serine protease, expressed on the surface of a variety of epithelial cells; it may play an important role in tissue remodeling. We have previously reported that the activation of matriptase is regulated by serum. We have now identified the bioactive component from serum. First, the activity was observed to co-purify with lipoproteins by conventional liquid chromatography and immunoaffinity chromatography. The ability of lipoproteins to induce the activation of matriptase was further confirmed with commercial preparations of low density lipoprotein (LDL) and very low density lipoprotein (VLDL). Next, we observed that the bioactive component of LDL is associated with the phospholipid components of LDL. Fractionation of lipid components of LDL by thin layer chromatography (TLC) revealed that the bioactive component of LDL comigrates with S1P. Nanomolar concentrations of commercially obtained S1P were then observed to induce the rapid activation of matriptase on the surfaces of nontransformed human mammary epithelial cells. Other structurally related sphingolipids, including dihydro-S1P, ceramide 1-phosphates, and sphingosine phosphocholine as well as lysophosphatidic acid, can also induce the activation of matriptase, but at significantly higher concentrations than S1P. Furthermore, S1P-dependent matriptase activation is dependent on Ca(2+) but not via G(i) protein-coupled receptors. Our results demonstrate that bioactive phospholipids can function as nonprotein activators of a cell surface protease, suggesting a possible mechanistic link between S1P and normal and possibly pathologic tissue remodeling. 相似文献
9.
10.