首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  21篇
  2018年   3篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2011年   3篇
  2007年   1篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1988年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
One-season fallows with legumes such as Crotalaria grahamiana Wight & Arn. and phosphorus (P) fertilization have been suggested to improve crop yields in sub-Saharan Africa. Assessing the sustainability of these measures requires a sound understanding of soil processes, especially transformations of P which is often the main limiting nutrient. We compared plant production, nitrogen (N) and P balances and selected soil properties during 5.5 years in a field experiment with three crop rotations (continuous maize, maize-crotalaria and maize-natural fallow rotation) at two levels of P fertilization (0 and 50 kg P ha?1 yr?1, applied as triple superphosphate) on a Kandiudalfic Eutrudox in western Kenya. The maize yield forgone during growth of the crotalaria fallow was compensated by higher post-fallow yields, but the cumulative total maize yield was not significantly different from continuous maize. In all crop rotations, P fertilization doubled total maize yields, increased N removal by maize and remained without effect on amounts of recycled biomass. Crotalaria growth decreased in the course of the experiment due to pest problems. The highest levels of soil organic and microbial C, N and P were found in the maize-crotalaria fallow rotation. The increase in organic P was not accompanied by a change in resin-extractable P, while H2SO4-extractable inorganic P was depleted by up to 38 kg P ha?1 (1% of total P) in the 0–50 cm layer. Microbial P increased substantially when soil was supplied with C and N in a laboratory experiment, confirming field observations that the microbial biomass is limited by C and N rather than P availability. Maize-legume fallow rotations result in a shift towards organic and microbial nutrients and have to be complemented by balanced additions of inorganic fertilizers. Abbreviations: BNF – biological nitrogen fixation; COM – continuous maize; LR – long rainy season; MCF – maize-crotalaria fallow rotation; MNF – maize-natural fallow rotation; SR – short rainy season; TSP – triple superphosphate.  相似文献   
2.
Zemek  O.  Frossard  E.  Scopel  E.  Oberson  A. 《Plant and Soil》2018,425(1-2):553-576
Plant and Soil - Legumes integrated in crop rotations are intended to improve crop nitrogen (N) supply and yield. In conservation agriculture (CA) systems under low input conditions on highly...  相似文献   
3.
4.
The integration of multipurpose legumes into low-input tropical agricultural systems is needed because they are a nitrogen (N) input through symbiotic fixation. The drought-tolerant cover legume canavalia (Canavalia brasiliensis) has been introduced for use either as forage or as a green manure into the crop-livestock system of the Nicaraguan hillsides. To evaluate its impact on the subsequent maize crop, an in-depth study on N dynamics in the soil-plant system was conducted. Microplots were installed in a 6-year old field experiment with maize-canavalia rotation. Direct and indirect 15N-labelling techniques were used to determine N uptake by maize from canavalia residues and canavalia-fed cows?? manure compared to mineral fertilizer. Litter bags were used to determine the N release from canavalia residues. The incorporation of N from the amendment into different soil N pools (total N, mineral N, microbial biomass) was followed during the maize cropping season. Maize took up an average of 13.3 g?N?m?2, within which 1.0 g?N?m?2 was from canavalia residues and 2.6 g?N?m?2 was from mineral fertilizer, corresponding to an amendment N recovery of 12% and 32%, respectively. Recoveries in maize would probably be higher at a site with lower soil available N content. Most of the amendment N remained in the soil. Mineral N and microbial N were composed mainly of N derived from the soil. Combined total 15N recovery in maize and soil at harvest was highest for the canavalia residue treatment with 98% recovery, followed by the mineral fertilizer treatment with 83% recovery. Despite similar initial enrichment of soil microbial and mineral N pools, the indirect labelling technique failed to assess the N fertilizer value of mineral and organic amendments due to a high N mineralization from the soil organic matter.  相似文献   
5.
Friesen  D. K.  Rao  I. M.  Thomas  R. J.  Oberson  A.  Sanz  J. I. 《Plant and Soil》1997,196(2):289-294
Soil-plant processes which enhance P acquisition and cycling in low-P Oxisols were investigated in a crop rotations and ley pasture systems experiment on the Colombian eastern plains. Comparison of rooting patterns indicated that, despite low available P at depth, there are important differences in root size and distribution among native savanna, introduced forage and crop species which affect their ability to acquire P from these soils. Differences in crop/forage residue decomposition and P release rates suggest that managing the interaction of residue with soil may help slow P fixation reactions. Despite these differences, soil P fractionation measurements indicate that applied P moves preferentially into labile inorganic P pools, and then only slowly via biomass production and microbes into organic P pools under both pastures and crop rotations.  相似文献   
6.
Phosphorus (P)-deficiency is a significant challenge for agricultural productivity on many highly P-sorbing weathered and tropical soils throughout the world. On these soils it can be necessary to apply up to five-fold more P as fertiliser than is exported in products. Given the finite nature of global P resources, it is important that such inefficiencies be addressed. For low P-sorbing soils, P-efficient farming systems will also assist attempts to reduce pollution associated with P losses to the environment. P-balance inefficiency of farms is associated with loss of P in erosion, runoff or leaching, uneven dispersal of animal excreta, and accumulation of P as sparingly-available phosphate and organic P in the soil. In many cases it is possible to minimise P losses in runoff or erosion. Uneven dispersal of P in excreta typically amounts to ~5% of P-fertiliser inputs. However, the rate of P accumulation in moderate to highly P-sorbing soils is a major contributor to inefficient P-fertiliser use. We discuss the causal edaphic, plant and microbial factors in the context of soil P management, P cycling and productivity goals of farms. Management interventions that can alter P-use efficiency are explored, including better targeted P-fertiliser use, organic amendments, removing other constraints to yield, zone management, use of plants with low critical-P requirements, and modified farming systems. Higher productivity in low-P soils, or lower P inputs in fertilised agricultural systems can be achieved by various interventions, but it is also critically important to understand the agroecology of plant P nutrition within farming systems for improvements in P-use efficiency to be realised.  相似文献   
7.
Three features of the heat shock response, reorganization of protein expression, intracellular accumulation of trehalose, and alteration in unsaturation degree of fatty acids were investigated in the thermophilic fungus Chaetomium thermophile and compared to the response displayed by a closely related mesophilic species, C. brasiliense. Thermophilic heat shock response paralleled the mesophilic response in many respects like (i) the temperature difference observed between normothermia and the upper limit of translational activity, (ii) the transient nature of the heat shock response at the level of protein expression including both the induction of heat shock proteins (HSPs) as well as the repression of housekeeping proteins, (iii) the presence of representatives of high-molecular-weight HSPs families, (iv) intracellular accumulation of trehalose, and finally (v) modifications in fatty acid composition. On the other hand, a great variability between the two organisms was observed for the proteins expressed during stress, in particular a protein of the HSP60 family that was only observed in C. thermophile. This peptide was also present constitutively at normal temperature and may thus fulfil thermophilic functions. It is shown that accumulation of trehalose does not play a part in thermophily but is only a stress response. C. thermophile contains less polyunsaturated fatty acids at normal temperature than C. brasiliense, a fact that can be directly related to thermophily. When subjected to heat stress, both organisms tended to accumulate shorter and less unsaturated fatty acids.  相似文献   
8.

Background

Agricultural production is often limited by low phosphorus (P) availability. In developing countries, which have limited access to P fertiliser, there is a need to develop plants that are more efficient at low soil P. In fertilised and intensive systems, P-efficient plants are required to minimise inefficient use of P-inputs and to reduce potential for loss of P to the environment.

Scope

Three strategies by which plants and microorganisms may improve P-use efficiency are outlined: (i) Root-foraging strategies that improve P acquisition by lowering the critical P requirement of plant growth and allowing agriculture to operate at lower levels of soil P; (ii) P-mining strategies to enhance the desorption, solubilisation or mineralisation of P from sparingly-available sources in soil using root exudates (organic anions, phosphatases), and (iii) improving internal P-utilisation efficiency through the use of plants that yield more per unit of P uptake.

Conclusions

We critically review evidence that more P-efficient plants can be developed by modifying root growth and architecture, through manipulation of root exudates or by managing plant-microbial associations such as arbuscular mycorrhizal fungi and microbial inoculants. Opportunities to develop P-efficient plants through breeding or genetic modification are described and issues that may limit success including potential trade-offs and trait interactions are discussed. Whilst demonstrable progress has been made by selecting plants for root morphological traits, the potential for manipulating root physiological traits or selecting plants for low internal P concentration has yet to be realised.  相似文献   
9.
Autophagy has been demonstrated to have an essential function in several cellular hematopoietic differentiation processes, for example, the differentiation of reticulocytes. To investigate the role of autophagy in neutrophil granulopoiesis, we studied neutrophils lacking autophagy-related (Atg) 5, a gene encoding a protein essential for autophagosome formation. Using Cre-recombinase mediated gene deletion, Atg5-deficient neutrophils showed no evidence of abnormalities in morphology, granule protein content, apoptosis regulation, migration, or effector functions. In such mice, however, we observed an increased proliferation rate in the neutrophil precursor cells of the bone marrow as well as an accelerated process of neutrophil differentiation, resulting in an accumulation of mature neutrophils in the bone marrow, blood, spleen, and lymph nodes. To directly study the role of autophagy in neutrophils, we employed an in vitro model of differentiating neutrophils that allowed modulating the levels of ATG5 expression, or, alternatively, intervening pharmacologically with autophagy-regulating drugs. We could show that autophagic activity correlated inversely with the rate of neutrophil differentiation. Moreover, pharmacological inhibition of p38 MAPK or mTORC1 induced autophagy in neutrophilic precursor cells and blocked their differentiation, suggesting that autophagy is negatively controlled by the p38 MAPK–mTORC1 signaling pathway. On the other hand, we obtained no evidence for an involvement of the PI3K-AKT or ERK1/2 signaling pathways in the regulation of neutrophil differentiation. Taken together, these findings show that, in contrast to erythropoiesis, autophagy is not essential for neutrophil granulopoiesis, having instead a negative impact on the generation of neutrophils. Thus, autophagy and differentiation exhibit a reciprocal regulation by the p38–mTORC1 axis.Autophagy is an evolutionarily conserved mechanism, by which portions of cytoplasm are engulfed in a double-membrane structure, known as the autophagosome, and delivered to lysosomes for subsequent degradation. Autophagy is dependent on autophagy-related (ATG) proteins.1 Autophagosome formation, elongation, and completion of enclosure require two ubiquitin-like conjugation systems: the first one generates the ATG5-ATG12 conjugate, which functions as a complex together with ATG16, and binds to the sequestering (pre-autophagosomal) phagophore. The second system conjugates an ATG8 homolog, LC3-I, with phosphatidylethanolamine to generate the lipidated LC3-II that associates with autophagosomes.2, 3, 4 The conversion of LC3-I into LC3-II represents a hallmark of autophagic activity and is widely used for the detection of autophagosome formation. Another frequently used marker for monitoring autophagic activity is p62, a protein, which is specifically degraded through autophagy.5The vital role of autophagy in cell growth, development, and homeostasis has long been appreciated. Recent data also indicate its involvement in the differentiation of hematopoietic cells. For instance, the importance of autophagy for efficient differentiation of leukocytes has been demonstrated with lymphocytes,6, 7, 8 monocytes,9 and dendritic cells,10 as well as reticulocytes.11,12 Since granulopoiesis in the bone marrow is characterized by significant morphological changes and the acquisition of a range of effector functions, we hypothesized that autophagy might have a crucial role in the differentiation of neutrophils.ATG5 is an essential protein for the elongation of pre-autophagosomal structures and subsequent autophagosome formation. Therefore, it represents a suitable genetic target for blocking autophagy. Using this strategy, we demonstrate here that neutrophil differentiation is controlled by autophagy, which in turn is negatively regulated by the p38 signaling pathway. Surprisingly, and in contrast to differentiation in other non-granulocytic hematopoietic lineages, autophagy was downregulated during physiological neutrophil differentiation and its inappropriate induction delayed the differentiation process.  相似文献   
10.
cDNA cloning and mapping of a novel islet-brain/JNK-interacting protein   总被引:5,自引:0,他引:5  
IB1/JIP-1 is a scaffold protein that regulates the c-Jun NH(2)-terminal kinase (JNK) signaling pathway, which is activated by environmental stresses and/or by treatment with proinflammatory cytokines including IL-1beta and TNF-alpha. The JNKs play an essential role in many biological processes, including the maturation and differentiation of immune cells and the apoptosis of cell targets of the immune system. IB1 is expressed predominantly in brain and pancreatic beta-cells where it protects cells from proapoptotic programs. Recently, a mutation in the amino-terminus of IB1 was associated with diabetes. A novel isoform, IB2, was cloned and characterized. Overall, both IB1 and IB2 proteins share a very similar organization, with a JNK-binding domain, a Src homology 3 domain, a phosphotyrosine-interacting domain, and polyacidic and polyproline stretches located at similar positions. The IB2 gene (HGMW-approved symbol MAPK8IP2) maps to human chromosome 22q13 and contains 10 coding exons. Northern and RT-PCR analyses indicate that IB2 is expressed in brain and in pancreatic cells, including insulin-secreting cells. IB2 interacts with both JNK and the JNK-kinase MKK7. In addition, ectopic expression of the JNK-binding domain of IB2 decreases IL-1beta-induced pancreatic beta-cell death. These data establish IB2 as a novel scaffold protein that regulates the JNK signaling pathway in brain and pancreatic beta-cells and indicate that IB2 represents a novel candidate gene for diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号