首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   5篇
  2021年   2篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2013年   3篇
  2012年   3篇
  2011年   7篇
  2010年   3篇
  2009年   2篇
  2008年   8篇
  2007年   9篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2003年   9篇
  2002年   10篇
  2001年   10篇
  2000年   10篇
  1999年   14篇
  1998年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   7篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1985年   1篇
  1984年   2篇
  1983年   5篇
  1982年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
1.
2.
Summary Kidney cortical tubular cells, mainly proximal tubular cells, isolated from human kidney and grown either on a basement membrane substrate in chemically defined medium or on plastic in serum-supplemented medium, had substantial proliferative potential and could be propagated for more than 10 generations or 8 passages before senescence. Basement membrane produced on a plastic substrate by the HR-9 endodermal cell line could replace serum supplementation in promoting tubular cell growth. Tubular cells grown on an HR-9 basement membrane substrate exhibited stable epithelial morphology over an extended period of time; in the presence of 5% serum they differentiated into organized structures such as hemicysts and cell cords. Cells grown on plastic failed to differentiate and gradually degenerated. Tubular cells on HR-9 basement membrane were characterized by densely packed microvilli, abundant rough endoplasmic reticulum and free polysomes, basal cell membrane interdigitations, a well-developed endocytotic apparatus, and conspicuous junctional complexes—all features of the proximal tubular cell. Compared with cells on plastic substrate, there were higher levels of the brush border enzymes γ-glutamyl transpeptidase,l-leucine aminopeptidase, and alkaline phosphatase in cells maintained on an HR-9 basement membrane substrate, further supporting the conclusion that a basement membrane substrate promoted differentiation of tubular cells. These data and morphological observations indicate that a basement membrane substrate can promote growth and both functional and morphologic differentiation of human kidney tubular cells. This work was supported by the Veterans Administration.  相似文献   
3.
Guinea pig glomeruli were grown in vitro for 22 days in a serum-free medium composed of Waymouth's MB 752/1 supplemented with sodium pyruvate, nonessential amino acids, antibiotics, insulin, transferrin, selenium, triiodothyronine, and fibronectin (FN), and sequential morphologic and quantitative studies of cell outgrowth were performed. Glomeruli grown in serum-free medium showed preservation of glomerular visceral epithelial cells but extensive necrosis of endocapillary cells (endothelial and mesangial cells). Morphologic analysis demonstrated progressive morphologic changes in cultured glomerular cells; however, most cell types observed in culture appeared to grow from the epithelial side of the glomerular basement membrane. Mitosis was a prominent component of glomerular cell outgrowth in vitro, and total DNA increased slightly during glomerular culture. FN was required for glomerular cell outgrowth, and studies using FN fragments demonstrated that the carboxy-terminal portion of FN was required for whole glomerular attachment. These results are used to develop a model for glomerular cell outgrowth in vitro.  相似文献   
4.
Reduced glutathione (GSH) inhibited catalase activity in a dose-dependent manner. DL-dithiothreitol (DL-DTT) and dithioerythritol (DTE) also inhibited catalase activity. The inhibition of catalase by GSH and DL-DTT could be reduced by NADPH. Polyacrilamide gel electrophoresis demonstrated the inhibition was partially reversible. The inhibition of catalase by GSH appeared to be partly due to superoxide radicals, since it was inhibited by active manganese superoxide dismutase, but not by heat-inactivated enzyme. Other chemical species also appear to take part in the inhibition, but they could not be identified.  相似文献   
5.
Summary Primary diethylstilbestrol-induced kidney tumors from Syrian hamsters were grown in vitro and maintained in culture for 6 mo. Combined immunohistochemical studies using antibodies to intermediate filaments and ultrastructural studies of tumor cells in culture exhibited characteristics similar to tumor cells in vivo. Furthermore, the cells manifested transformed properties in culture; they grew both as multilayered colonies attached to the tissue culture substrate and as floating multicellular colonies (spheroids). When cultured cells were injected into diethylstilbestrol-treated recipient hamsters, tumors developed at the injection sites. In contrast, renal tubules or whole kidney cortex from control hamsters cultured in the same medium underwent only short-term growth, with senescence developing after approximately 1 mo. However, cell cultures of kidney cortex from animals treated in vivo for 5 mo. with diethylstilbestrol formed a cell line. This diethylstilbestrol-induced cell line has been maintained in culture for 1.5 yr and has the following characteristics: a) it is anchorage-dependent, b) it is negative in in vivo tumorigenicity tests, and c) cultured cells are histochemically and ultrastructurally similar to cultured tumor cells. This culture system should prove to be of use in studying hormonal carcinogenesis in vitro. This study was supported by the Medical Research Service, Department of Veterans Affairs, Washington, DC, and by grant CA-22008 from the National Cancer Institute, NIH, DHHS, Bethesda, MD.  相似文献   
6.
Primary kidney guinea pig glomerular cells were successfully grown in chemically defined media containing insulin, transferrin, and fibronectin or glycylhistidyllysine and fibronectin. Morphologic analysis of glomerular cells grown in either of these chemically defined media provided identical results with respect to cell growth properties and cell types involved. Electron microscopic studies of glomeruli early after they had been placed in culture showed definite evidence of "dedifferentiation" of some glomerular cells. Most glomerular cells in later cultures were undifferentiated. However, since electron microscopic analyses of glomeruli in confluent cultures demonstrated that the majority of cells in culture grow from the epithelial side of the glomerular basement membrane, we suggest that these cells were some form of epithelial cell. This conclusion was further strengthened by the fact that cells resembling well differentiated glomerular epithelial cells were seen in cultures of glomeruli grown in chemically defined media; these cells have never been observed in glomeruli grown in calf serum. Fluorescent microscopy of cell stained with the mitochondrial stain rhodamine 123 allowed identification of several glomerular cell types according to distribution, number, and morphology of mitochondria. Similarly, indirect immunofluorescent microscopy studies using antibodies to fibronectin or laminin provided evidence that glomerular cells separated into cell types according to mitochondrial staining properties were unique biochemically. Using these histochemical criteria it was possible to demonstrate that certain of the glomerular cell types could be selectively grown by addition of the enzyme galactose oxidase to the media. Analysis of our morphologic and histochemical results suggests the possibility that clonal growth and differentiation of glomerular epithelial cells occurs when glomeruli are placed in chemically defined media, and our results are compatible with the hypothesis that either "stem cells" or "dedifferentiated" cells are the primary cells dividing in culture.  相似文献   
7.
8.

Background

Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data.

Results

Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution.

Conclusions

While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.  相似文献   
9.
Free radicals are involved in the aging process. In this study, the profile of primary antioxidant enzymes that scavenge reactive oxygen species (ROS) was examined for the first time in human skin fibroblasts from progeria, a premature aging disease. Altered levels of antioxidant enzymes were found in progeria cells. Basal levels of MnSOD were decreased in progeria cells as well as a blunted induction in response to chronic stress. This change may contribute to the accelerated aging process in progeria cells. In contrast, the levels of CuZnSOD showed no progeria-related change. Two H2O2 removing enzymes demonstrated a significant reduction in progeria cells: only 50% of normal CAT activity and 30% of normal GPX activity can be detected in progeria cells. This diminished H2O2 removing capacity in progeria cells may lead to an imbalance of intracellular ROS and therefore may play an important role in the development of progeria.  相似文献   
10.
It has been hypothesized that exposure of cells to hyperthermia results in an increased flux of reactive oxygen species (ROS), primarily superoxide anion radicals, and that increasing antioxidant enzyme levels will result in protection of cells from the toxicity of these ROS. In this study, the prostate cancer cell line, PC-3, and its manganese superoxide dismutase (MnSOD)-overexpressing clones were subjected to hyperthermia (43°C, 1 h). Increased expression of MnSOD increased the mitochondrial membrane potential (MMP). Hyperthermic exposure of PC-3 cells resulted in increased ROS production, as determined by aconitase inactivation, lipid peroxidation, and H2O2 formation with a reduction in cell survival. In contrast, PC-3 cells overexpressing MnSOD had less ROS production, less lipid peroxidation, and greater cell survival compared to PC-3 Wt cells. Since MnSOD removes superoxide, these results suggest that superoxide free radical or its reaction products are responsible for part of the cytotoxicity associated with hyperthermia and that MnSOD can reduce cellular injury and thereby enhance heat tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号